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The unique mechanical properties of graphene [1]
offer wide possibilities for its practical application in
various fields of science and engineering. In particular,
graphene is currently used in development and pro�
duction of nanoresonators [2]. Therefore, an urgent
problem is the development of models for description
of the mechanical properties of graphene and other
carbon nanostructures under various loadings. In
practice, the mechanical behavior of carbon structures
is often simulated using discrete�continuum models
[3, 4]. Thermal motion can be taken into account
explicitly by the molecular dynamics method [5] based
on integration of classical equations of motion of
interacting particles. Within molecular dynamics sim�
ulation, the key role is played by the laws of inter�
atomic between particles (interatomic potentials). In
the case of graphene, construction of such potentials is
complicated due to the fact that interatomic bonds are
directed. This problem is often solved using many�
body potentials, which depend on the positions of a
large number of particles [6, 7]. These potentials
describe the physicochemical properties of graphene
with high accuracy. However, the mechanical proper�
ties are reproduced, as a rule, with a large error [8].
The literature review [8] show that the overwhelming
majority of the known many�body potentials describe
elastic moduli (in particular, Poisson’s coefficient) of
graphene incorrectly. According to the results reported
in [8, 9], the mechanical properties of graphene are
described most accurately by the AIREBO potential
(see table) [7].

An alternative approach based on the moment
interactions is described, for example, in [10]. It was

shown that, at an appropriate choice of interaction
parameters, the elastic properties of graphene in the
sheet plane can be reproduced accurately. In study
[10], however, building the potential describing strong
deformation and fracture is not discussed. The use of
such a potential for description of in�plane properties
of graphene was proposed in [11] and generalized to
the three�dimensional case in [12]. However, the
potential proposed in [12] cannot be used at large rel�
ative rotations of particles during strong deformation
and fracture of graphene.

This study was aimed at development of the
approach described in [10]. The main relations are
presented that describe the interactions of particles
with rotational degrees of freedom; the approaches
proposed in [10, 5] are combined. These relations are
used to build the potential for carbon in the sp2 hybrid�
ization state. The connection between parameters of
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Mechanical characteristics of graphene. Experimental data
and results of the molecular�dynamic simulations

Parameter Potential
(4)

Potential
AIREBO [9]

Experimen�
tal

[data]

E, N/m 346.5 338 350 [13]

ν 0.171 0.21 0.17 [13]

σcr(zigzag), N/m 45.8 43 42* [1]

σcr(armchair), 
N/m

42.6 34 42* [1]

εcr(zigzag) 0.196 0.20 0.25* [1]

εcr(armchair) 0.186 0.13 0.25* [1]

KB, nN nm 0.225 0.225** –

Error ≤1% ≤5% ≤20%

* Strength properties of graphene were considered to be isotro�
pic [1].
** The value of bending stiffness was calculated in [15] on the
basis of the first�generation Brenner potential.
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the potential and characteristics of an interatomic
bond is determined. Molecular�dynamic simulation
of deformation and fracture of graphene upon tension
is performed. During simulation, elastic and strength
characteristics of graphene are calculated. The
obtained values are compared with the known experi�
mental data [1, 13] and the results of the molecular�
dynamic simulation on the basis of the many�body
AIREBO potential [9].

We build the potential describing the interatomic
interactions in graphene using the approaches pro�
posed in [10, 5]. We use a point rigid body as a model
of the carbon atom [10]. For brevity, hereinafter the
point solids are referred to as particles. Let the interac�
tions between particles be implemented by forces and
moments that depend on the mutual position and ori�
entation of particles. In this study, we limit our consid�
eration solely to pair interactions [10]. Our argumen�
tation is demonstrated by the example of two particles
marked with indices 1 and 2. Let us introduce the fol�
lowing notation:  and  are the force and moment
affecting the ith particle from the side of the second
particle; moment  is calculated relative to the ith

particle. The values of  and  satisfy Newton’s third
law for the forces, analogue of Newton’s third law for
the moments and the energy balance equation [10]:

(1)

where ,  is the radius�vector of the ith
particle, ω1 and ω2 are the angular velocities of parti�
cles, and U is the internal energy of the system. Let us
determine the correlation of the forces and moments
in the system of two particles with the internal energy.
For this purpose, we introduce two sets of unit vectors

 and  that tightly bond with particles 1
and 2, respectively, where Λ1 and Λ2 are the index sets.
Let the introduced vector sets be such that they can
completely specify the orientation of the particles. The
maximum number of vectors is not limited and does
not affect our consideration. In the general case, U
depends on the position and orientation of the parti�
cles. Let the orientation of a particle be unambigu�

ously specified by vectors  and ; then,
we may write

(2)

Using formula (2) and energy balance equation (1)
and assuming that forces  and moments  do not
depend on the linear and angular velocities of the par�
ticles, it can easily be shown that
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If internal energy (2) is known, formulas (3) determine
the expressions for the forces and moments necessary
for the molecular�dynamic simulation. Function U
should satisfy the material objectivity principle. Note
also that, in the case when the internal energy is objec�
tive, the forces calculated by formulas (3) automati�
cally satisfy Newton’s third law for moments. Herein�
after, function U is referred to as the interatomic
potential.

On the basis of the above approach, we build the
potential describing the covalent interactions between
carbon atoms in the sp2 hybridization state. We seek
the potential in the form 

where  To obtain the required symmetry of

interactions in graphene, we choose the vectors related

to the particles as follows. Let the unit vectors  (j =
1, 2, 3, 4) be related to the ith particle. We place vectors

, , and  in one plane by the angles 2π/3 to one
another (this is analogous to arrangement of the bonds

in a strainless graphene sheet). Vector  is deter�

mined by the relation . For the interac�

tions to be symmetrical, we require the potential to be

invariable upon permutation of vectors , , and 

and upon the replacement   – . We also
require the bonds in graphene to have stiffness in ten�
sion/compression, shear, bending, and torsion [10].
According to the above general considerations, we
express the energy of the interaction between parti�
cles 1 and 2 as

(4)

Functions ϕA and ϕR describe attraction/repulsion
between the particles, and UB and UT provide bond
resistance against shear, bending, and torsion. We
choose the functions in formula (4) to satisfy exactly
the following parameters of the interatomic bond:
bond energy D; longitudinal, transversal, bending, and
torsion stiffnesses cA, cD, cB, and cT [10]; critical bond
length (i.e., the distance corresponding to the maxi�
mum force arising between particles upon bond
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stretching) b; and the nonlinearity coefficient

, where f∗ is the bond strength. In addi�

tion, we require the considered functions to be smooth
along with their first derivatives. This ensures continu�
ity of the forces and moments (3). The set of the func�
tions satisfying these requirements is

(5)

where a is the equilibrium distance and acut is the cutoff
radius. An important feature of functions (5) is that
parameters Bi entering these functions are fairly sim�
ply expressed by the mechanical characteristics of the
interatomic bond. It can be shown that the expressions
for Bi have the form

(6)

It is seen from formulas (6) that, by fitting the
parameters of potential (5), the values of D, a, b, cA, cD,
cB, cT, and k∗ characterizing the interatomic bonds in

graphene can be satisfied exactly. The properties of the
interatomic bonds determine, in turn, the mechanical
properties of graphene on the macroscale. In particu�
lar, it was shown in [10, 14] that the values of cA, cD, cB,
cT unambiguously determine the elastic moduli of
graphene (Young’s modulus, Poisson’s coefficient,
and bending stiffness). Within the proposed model,
bending and shear rigidities of the bond, cB and cD, are
independent. Note that, in the widely used rod models
of graphene [4], the relation cB = cDa2/12 is found.
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Quantities k∗ and b are uniquely related to the strength

and critical deformation of graphene upon tension. In
this study, we used the following values of the charac�
teristics of the carbon–carbon bond:

(7)

The values of D and a were taken from [6, 10]. Longi�
tudinal and transversal bond stiffness cA and cD were
determined in a series of the molecular�dynamic
experiments on uniaxial deformation of graphene at
the temperature of 300 K. In the simulation, the fol�
lowing set of equations of motion was solved numeri�
cally:

(8)

where m and J are the mass and moment of inertia of a
particle (for simplicity, the particles were assumed to

have a spherical tensor of inertia). Forces  and

moments  affecting the ith particle from the side of

the jth particle were calculated on the basis of potential
(4) by formulas (3). In the simulation, Young’s modu�
lus E and Poisson’s coefficient v of graphene were cal�
culated. The values of cA and cD were chosen from the
condition of the best correspondence between the sim�
ulation and experimental elastic moduli [1]. Note that
the values of cA and cD used in this study differ from the
values from [10] (cA = 730 N/m and cD = 402 N/m)
by 10%, since in [10] thermal motion was not taken
into account. Parameters cB and cT were chosen from
the correspondence of bending stiffness of a graphene
sheet determined by potential (4) and the results of the
calculation on the basis of the first�generation Brenner
potential [15]. In this study, the bending stiffness was
determined as [14]

To determine bond strength characteristics b and k∗,

the molecular�dynamic simulation of the uniaxial ten�
sion of a graphene sheet in the zigzag and armchair
directions was performed. In the simulation, strength

limit σcr and critical deformation  were determined.
Parameters b and k∗ were chosen from the condition

of best consistency between the calculated and exper�
imental data [1]. The molecular�dynamic simulation
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resulted in the following values of the parameters of
potential (4):

(9)

Parameters B7 and acut characterizing the long�range
character of the potential were found by solving the set

of equations ϕR(acut) = 0 and (acut) = 0. The values

of the mechanical characteristics of graphene
obtained in the simulation and the results of the calcu�
lation on the basis of the AIREBO potential [11] and
the experimental data [1, 13] are presented in the
table. It can be seen that the values of the mechanical
characteristics of graphene are in good agreement with
the experimental data from [1, 13] and the results of
the calculation on the basis of the AIREBO potential
[11]. The values of the elastic moduli differ from the
experimental data from [13] by no more than 1%.
Strength characteristics coincide with the experimen�
tal data from [1] accurate to the experimental error.
Note also that, unlike the AIREBO potential, poten�
tial (4) makes it possible to satisfy the experimental
Poisson coefficient from [13] accurately.

Thus, potential (4) proposed in this study allows to
describe the elastic and strength properties of
graphene within the experimental error.
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