
Chapter 29
Signatures of Transient Purely Ballistic
Heat Conduction: Theory and
Experimental Investigation

Aleksei A. Sokolov, Wolfgang H. Müller, Anton M. Krivtsov,
and Alexey V. Porubov

Abstract In this paper, we propose an approach to define thermal conductivity for
a purely ballistic transient heat conduction and study its size dependence for two-
dimensional structures in circular geometry in order to use this dependence as a
purely ballistic regime signature. Then, a review of various experimental techniques
by which the thermal conductivity is measured is presented. Finally, the thermal con-
ductivity of graphene in purely diffusive regime is measured for one fixed sample
size using Raman thermometry. The result of the proposed theoretical approach is a
linear dependence on the sample size in the case of purely ballistic thermal conduc-
tivity. An outcome of an experimental study of graphene in a purely diffusive regime
and the presented review of experimental methods are the basis for an extension of
further experimental studies to the anomalous heat conduction regimes.

Keywords Ballistic heat transport · Ballistic limit · Harmonic crystal ·
Graphene · Raman · Transient processes · Anomalous heat transport

29.1 Introduction

In recent years, the study of anomalous thermal conductivity, i.e., processes that
deviate from the classical Fourier equation, has been actively developing in the
scientific community. A number of experimental studies of this anomaly in solid
crystals can be found in [10, 11, 26]. A theoretical description of this phenomenon is
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possible by using the kinetic approach (Boltzmann equation), the Maxwell-Cattaneo
model [15], the Guyer-Krumhansl model [19], lattice dynamics [20], and some other
methods.

The difficulty in connecting the proposed models with processes in real materi-
als lies in the fact that such transient processes occur at very high speeds (speed of
sound in crystals, e.g., >10km/s for graphene [7]). Moreover, since the process is
fundamentally different from Fourier’s law, it lacks the thermal conductivity coef-
ficient as a material parameter. However, even when Fourier’s law does not hold,
in an experimental setting and molecular dynamic simulations when a steady non-
equilibrium temperature gradient is applied to the specimen, it turns out that it is
convenient to use the mathematical formulation of Fourier’s law and to observe the
size dependence of thermal conductivity as a signature of anomalous regimes [6,
20, 28, 29]. Thus, experimental methods, which have now already become a stan-
dard, have been developed to determine the thermal conductivity coefficient from
Fourier’s law [30]. As an alternative, for example, the thermal grating method deals
directly with a non-stationary formulation [11]. However, it has some open questions
to consider. For example, the measurement of the thermal process occurs indirectly,
through the accompanying thermoelastic process, which, despite the fact that it does
not have a significant effect in the classical regime, can become more pronounced in
the ballistic regime (see so-called ballistic resonance [18]).

In the classical regime of heat conduction, the heat flux is proportional to the gradi-
ent of temperature. Accordingly, the coefficient of proportionality (heat conductivity
κ) is a material parameter and does not depend on the system size, L . In anomalous
heat conduction, the process deviates from the classical Fourier law. A number of
theoretical results have shown a power divergence of heat conductivity κ ∼ Lα for
1D systems [20]. This result was confirmed also experimentally [27].

Recently in the laboratory “Discrete Models in Mechanics” IPME RAS under the
supervision of A.M. Krivtsov, a ballistic heat conductionmodel based on the analysis
of crystal dynamics was developed [16, 17]. The proposed model has a number of
obvious advantages (analytical description, lack of phenomenological assumptions).
Despite the fact that there are also some shortcomings (harmonic approximation,
lack of quantum effects description) it is undoubtedly promising for the description
of ballistic heat propagation from the point of view of continuummechanics and con-
stitutive theory. For an experimental study of the limits of applicability of this theory
and its correspondence to real materials, a joint project with W.H. Müller, Chair
of Continuum Mechanics and Constitutive theory of TU Berlin was initiated. The
group has extensive experience in experimental work on a micro-level and expertise
in continuum mechanics [1, 21, 22].

In order to connect the two descriptions, non-stationary ballistic model and the
classical Fourier thermal conductivity coefficient, a theoretical method is proposed
in this work, based on a definition of thermal conductivity for transient ballistic
processes originally suggested in [17]. Furthermore, experimental studies using the
methods available in the laboratory of TU Berlin and a review of works on this
topic are presented. Last, an experimental measurement of the thermal conductivity
of graphene is performed. Graphene was chosen as the material of investigation
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Fig. 29.1 Dependence of thermal conductivity on length of the structure at different temperatures,
a logarithmic scale, b linear scale. The data for each curve is normalized to its value at L = 20µm.
Graphs are plotted using data from [29]

because, first, it has great potential for technological applications in microelectronic
devices. Second, its greatest importance is that it is cheap to manufacture and it is
possible to produce ultrapure defect-free monocrystalline samples (grain size up to
20µm). Thus, graphene appears to be a very convenient playground for experimental
verification of the abovementioned theoretical predictions.

Theoretical results presented in [20] for 2D anharmonic systems show a logarith-
mic divergence of thermal conductivity κ ∼ log(L). This is confirmed by experi-
mental results with graphene for a quadrilateral over a large temperature range [32]
and for circular geometries at room temperature (RT) [8, 12], and also by numer-
ical simulation at RT for circular geometry [4]. Numerical simulations of 2D FPU
systems1 in [31] showed a logarithmic divergence for αβ-FPU and purely quartic
models, and a power divergence forβ-FPU systems. In [29], a kinetic theorywas used
and third-order terms in the Hamiltonian were taken into account. The results [29]
indicate a logarithmic divergence for temperatures approximately above liquid nitro-
gen temperatures and a power divergence below (see Fig. 29.1). These findings for
2D materials showing power divergence are of special interest, since at very low
temperatures the influence of anharmonicity decreases and a purely ballistic heat
conduction regime is achievable.

The rest of this paper is structured as follows. In Sect. 29.2, thermal conductivity
is defined for the equations of ballistic heat conduction and its size dependence is
investigated. In Sect. 29.3, a review of experimental techniques and results of mea-
surements performed at TU Berlin are presented. The size dependence of thermal
conductivity obtained theoretically from ballistic model in previous section is com-
pared with available experimental data. Section29.4 closes with a conclusion.

1 FPU = Fermi-Pasta-Ulam.
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Fig. 29.2 Schematic
representation of the
considered anomalous heat
conduction process

29.2 Divergence of Heat Conductivity for Transient Purely
Ballistic Heat Conduction

An engineering approach to the definition of thermal conductivity stems from the
problem of two regions with temperatures Thot and Tcold, separated at a distance L
with a medium with thermal conductivity κ. In a classical diffusive heat conduction
regime, a linear temperature profile results with uniform heat flux q. In this case,
heat conductivity is defined as

κ = qL

�T
, �T = Thot − Tcold. (29.1)

When studying anomalous heat conduction, the heat flux is not uniform. This
was observed, for example, in one-dimensional discrete systems [20]. For a one-
dimensional system of N particles between hot and cold reservoirs separated by a
length L , an averaged heat flux is defined as 〈q〉 = ∑

n qn/N , where qn is a local
per particle heat flux and a definition for the thermal conductivity similar to (29.1)
results, κ = 〈q〉L/�T . The same approach is possible for bulk systems [28] where
a spatial average over the volume between the reservoirs is used.

Let us consider the anomalous heat flux in two-dimensional materials. It was
shown in [16] that a fundamental solution for the kinetic temperature field for a purely
ballistic heat conduction regime is a self-similar function, which can be represented
as

T = 1

t2
f
(r

t
sinϕ,

r

t
cosϕ

)
, r < R, (29.2)

where r , ϕ are polar (radial and angular, respectively) coordinates, R = ct , and c is
the fastest group velocity in the system. For r > R, the temperature field remains
zero (we assume a background temperature of zero).

The process described by this fundamental solution has the following features.
Initially, a point perturbation is applied at the point of origin. Then the heat flows
from the center radially away forming a growing circle with a radius increasing at a
constant speed. Outside of this circle the temperature remains zero, see Fig. 29.2.
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Applying the approach subsumed in formula (29.1), the thermal conductivity
can be defined as follows. Heuristically we fix the moment of observation time and
restrict the considered space to the circle inside which by the moment of observation
the energy has spread radially. Then the average heat flux, which is to be substituted
in (29.1) and which causes the energy spread from the heated center to the colder
boundary, is the average of a radial component of flux over the whole area of this
circle,

〈q〉 =
∫

S
q · r̂ dS
S

=

2π∫

0

R∫

0
qr (r,ϕ)r dr dϕ

πR2
, (29.3)

where r̂ is the radial vector and S is the area of the circle.
The temperature difference in the denominator of (29.1) between hotter and colder

regions will be in this axisymmetric case given by the difference between the tem-
perature in the center, from which the heat flows radially away, and the temperature
of the background toward which the heat flows. Since the background temperature
is zero the temperature difference is �T = T (0).

As an approximation, we assume that the temperature profile can be factorized
into radial and angular components,

T (r,ϕ) = 1

t2
f
(r

t
sinϕ,

r

t
cosϕ

)
≈ 1

t2
�

(r

t

)
�(ϕ) . (29.4)

Although this may be not strictly true, the author believes that the main factor
which contributes to the thermal conductivity within this framework is the flux in
the direction of the radial component along which the heat transfers from the hotter
(center) to the colder (boundary) region. The heat flux is also factorized as

qr ≈ q̂r (r, t)� (ϕ) . (29.5)

A more precise form of heat flux function will be presented later.
Substituting the averaged heat flux (29.3) into the thermal conductivity (29.1) and

taking for the length of the system the radius of the circle, L = R, yield

κ = 〈q〉R
�T

=
2π∫

0

�(ϕ) dϕ

R∫

0
q̂r (r, t)r dr

πRT (0)
. (29.6)

We are interested in the proportionality dependence of the thermal conductivity but
not in its absolute value. Therefore, by recalling R = ct and by omitting the constant
arising from integration of angular component and other constants, one obtains the
following proportionality:
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κ ∼

R∫

0
q̂r (r, t)r dr

tT (0)
∼ t

R∫

0

q̂r (r, t)r dr, (29.7)

where the last proportionality arises, because it can be seen from (29.2) that T (0) ∼
1/t2.

Let us consider the local energy balance equation,

ρu̇ = −∇ · q, (29.8)

and integrate it over the surface of a circle D : |x| ≤ r ,

∫

S∈D
ρu̇ dS = −

∫

S∈D
∇ · q dS. (29.9)

According to divergence theorem, the right-hand side of this equation transforms
into

∫

S∈D
∇ · q dS =

∫

l∈∂D
q · n dl =

2π∫

0

q̂r (r, t)�(ϕ)r dϕ = r q̂r (r, t)

2π∫

0

�(ϕ) dϕ

=C1r q̂r (r, t),
(29.10)

where ∂D is the circle boundary, normal to which is a radial unit vector n = r̂,
dl = r dϕ.C1 is the constant arising from integration of the angular part of heat flux.
The left-hand side together with u = cV T , where cV is the specific heat capacity at
constant volume, gives

∫

S∈D
ρu̇ dS = ρcV

∫

S∈D
Ṫ dS =

2π∫

0

�(ϕ) dϕ

r∫

0

∂

∂t

[
1

t2
�

(
r̃

t

)]

r̃ dr̃ =

= C2

r∫

0

∂

∂t

[
1

t2
�

(
r̃

t

)]

r̃ dr̃ .

(29.11)

Expanding time derivative in the last equality yields

∂

∂t

[
1

t2
�

(
r̃

t

)]

= − 2

t3
�

(
r̃

t

)

− r̃

t4
�′

(
r̃

t

)

, (29.12)

where the dash (...)′ denotes differentiationwith respect to the argument. Substituting
it back to (29.11) leads to
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∫

S∈D
ρu̇ dS = −C2

t

∫ r/t

0

[

2�

(
r̃

t

)

+ r̃

t
�

(
r̃

t

)]
r̃

t
d
r̃

t
= −C2

t
ζ

(r

t

)
. (29.13)

A combination of (29.10) and (29.13) yields an expression for the radial compo-
nent of the heat flux,

q̂r (r, t) = C3

r t
ζ

(r

t

)
, C3 = C2/C1. (29.14)

Substitution of (29.14) into the integral in (29.7) gives

R∫

0

q̂r (r, t)r dr =
ct∫

0

C3

t
ζ

(r

t

)
dr =

c∫

0

C3ζ
(r

t

)
d
r

t
= const. (29.15)

Thus, from (29.15) and (29.7) it follows that

κ ∼ t. (29.16)

It is also seen from (29.15) that the average heat flux in this process is constant,
〈q〉 = const. Therefore, proportionality of thermal conductivity is determined by the
ratio R/T (0). Recalling that R = ct , and T (0) ∼ 1/t2 this result is directly obtained.

By using the result (29.16) and t = R/c it also follows that

κ ∼ R. (29.17)

Formula (29.17) shows that the thermal conductivity diverges linearly with the disk
radius R. Note that mostly in anharmonic systems the dependence is not of the power
type but logarithmic. One of the publications [31] shows a power (but not a linear)
dependence for β-FPU system.

29.3 Experimental Techniques

A conventional experimental technique for measuring a coefficient of heat conduc-
tivity κ is to apply a temperature difference on the boundaries of the system and to
measure a steady heat flux. Heat conductivity is then calculated from Fourier’s law.
For a circular symmetry, the heating is usually applied to the center of the system
under observation so that a temperature difference is established between the center
and the boundary of the examined disk. We consider the following mathematical
formulation of the problem. A graphene disk with radius R is heated in the center
by a laser. The boundary is held at ambient temperature. The heat production q(r)
is assumed to be Gaussian within the plane:
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Fig. 29.3 Heat production
of the Gaussian type in a
circular membrane

q(r) = P

πdr20
e

r2

r20 , (29.18)

where d is the thickness of graphene, r0 is the theoretical Gaussian spot size.
The situation is presented in Fig. 29.3. In order to describe a steady temperature

profile, let us consider the diffusive Fourier equation in cylindrical coordinates with
a production term q(r):

κ
1

r

d

dr

(

r
dT

dr

)

+ q(r) = 0. (29.19)

We introduce the dimensionless variable r̃ = r/r0. By integrating Eq. (29.19), we
get the solution as follows:

T (r̃) − T (0) = 1

2

P

πdκ

∫ r̃

0

1 − e−x2

x
dx =

1

2

P

πdκ

(

ln r̃ − 1

2
Ei(−r̃2) + γ

2

)

≈ 1

2

P

πdκ

(
ln r̃ + γ

2

)
,

(29.20)

where Ei is the exponential integral function, γ is the Euler’s constant. Then if the
drop of the temperature between temperature in the center Tc and the boundary Tb
is known one can express the heat conductivity by the formula:

κ = 1

2

P

πd (Tc − Tb)

(

ln
R

r0
+ γ

2

)

. (29.21)

29.3.1 Raman Thermometry

Introductory Remarks

Raman thermometry was introduced in the work of Balandin and colleagues [3, 5].
The laser beam is used as a heating source in the center of a membrane and at the
same time as a probe. In order to apply this technique successfully, the graphene
membrane must be attached to an efficient heat sink. The temperature of a boundary
can then be assumed to have ambient temperature. By knowing the laser power and a
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Fig. 29.4 a Room-
temperature Raman
spectrum from single-layer
suspended graphene b
optical microscope image of
the sample. The scale bar is
5µm

Fig. 29.5 Temperature
dependence of G-peak
position of a single-layer
graphene (black dots) and
linear fit (red dashed line).
The graph is plotted using
data from [3]

coefficient of absorption, and by combining it with measured temperature difference
the coefficient of heat conductivity is calculated by using formula (29.21).

The spectrum of a suspended single-layer graphene at room temperature is
presented in Fig. 29.4. Characteristic features are the G-peak located around ca.
1580cm−1 and the D-peak located around ca. 1380cm−1. It was observed in [3] that
an increase of temperature leads to a red shift of the G-peak. The dependence of
the G-peak position on the temperature of a graphene on a substrate is presented in
Fig. 29.5 (data taken from [3]).

The temperature dependence of a G mode can be described by the following
equation (after [3]):

ω = ω0 + χT, (29.22)
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Table 29.1 Temperature coefficient of single-layer graphene

Substrate χ (cm−1/K) Method Comment Ref.

SiO2 −0.015 External heating – [3]

SiO2 −0.03 External heating – [25]

Suspended −0.0405 External heating – [2]

– −0.03 MD AIREBO,
quasilinear

[14]

– −0.06 MD LCBOP,
quasilinear

[14]

– −0.0517 MD Tersoff-2010 [14]

Table 29.2 Coefficient of optical absorption of single-layer graphene

Optical absorption coefficient
α

Wavelength nm Ref.

3.4 ± 0.7% 532 [2]

2.3 ± 0.1% 500–740 [24]

2.3 ± 0.2% 1033–2479 [23]

2.9 ± 0.2% 532 [5]

where ω0 is the frequency of the G mode when the temperature is extrapolated to
0K, χ is the temperature coefficient, calculated from a slope of linear fit.

Temperature coefficients calculated in a number of publications are presented
in Table29.1. In numerical calculations [14], several interatomic potentials were
considered. Only the Tersoff-2010 potential was able to reproduce the linear G-
peak shift observed in the experiments, while LCBOP and AIREBO potentials show
a nonlinear, non-monotonic behavior at low temperatures, which deviates from the
experimental results. At higher temperatures, these two potentials show a quasilinear
behavior with temperature coefficients presented in Table29.1.

By applying this technique one can use the reflected laser light as a thermometer
and determine the temperature difference in (29.21). When knowing the coefficient
of optical absorption of graphene α and the power of incident laser PI the absorbed
power P is calculated P = αPI . Then κ is calculated from (29.21). The coefficients
of optical absorption obtained in recent publications are presented in Table29.2. A
conventional method to measure the absorption is to measure the difference between
the laser power with a power meter, first through an empty hole and then through a
suspended graphene membrane [2, 5].

Coefficients of thermal conductivity from various references are presented in
Table29.6. The disadvantage of this method is that the spatial resolution is limited
by the diffraction limit ∼1µm. Therefore, systems bigger than 1µm do not allow
to investigate ballistic transport at RT with this method since ballistic transport is
observed at RT only at smaller scales. Thus, in Table29.6, the values of heat con-
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Table 29.3 Laser power in % of maximum power of source and absorbed power

% Max
power

0.1 0.5 1 5 10 50

Incident
power mW

39e-3 196e-3 0.36 2.69 4.91 27.46

Absorbed
power mW

9e-4 4.5e-3 0.008 0.06 0.11 0.63

duction that correspond to a diffusive regime when κ is a material parameter are
presented.

We assume temperature coefficient for G-peak to be equalχ = −0.04 cm−1/K [2]
and an optical absorption of graphene 2.3% [24]. The power of laser can be changed
with the steps of ..., 0.1%, 0.5%, 1%, 5%, 10%, 50%, 100% of themaximumworking
power. It gives us the following correspondence with absorbed laser power complied
in Table29.3.

The beam power was measured by using an Edmund Optics Touchscreen Laser
Power Meter with beam spread on the aperture of the sensor with a 5x magnification
objective. We performed the experiments with different powers of laser excitation
in order to obtain the G-peak shift as a function of absorbed laser power. By using
the temperature coefficient and the relations (29.22) the corresponding temperature
difference is calculated. The powers 0.1%, 0.5%, 1%donot cause any noticeable peak
shift and correspond to the ambient temperature peak position. The power of 50%
was excluded from the investigation because it was visually seen that illumination of
the substrate occurred at this power, which could cause additional power generation
at the boundary. Thus, the peak shift is calculated as difference of peak positions at
powers 0.5% and 10%. �ω = ω0.5% − ω10%.

Materials and Measurement

In the experiment, TEMgridsmade of gold are used as a support for the substrate. The
Au grid is 300 mesh with size between the bars 63µm. The grid is covered with the
amorphous carbon film. The thickness of the carbon film is about 12nm and it has 2
micron holes, see Fig. 29.4b. Monoatomic graphene layer grown by chemical vapor
deposition is transferred over carbon layer (covering the holes), d = 305nm. For
Raman measurements λ = 532 nm laser source with a 100x objective and numerical
aperture NA = 0.85 is used, which gives theoretical Gaussian spot size used in
Eq. (29.18) r0 = λ/πNA = 0.19µm.

In order to ensure reproducibility, we performed ten measurements of a peak shift
�ω with ten different graphene disks, where the presence of graphene was confirmed
by obtaining the Raman spectrum of graphene. The measurements were conducted
as follows. First the Raman G-peak was measured by acquisition at 0.5% for 120s.
Then spectral acquisition was done at 10% power for 120s. This time length of
spectral acquisition was chosen in order to ensure a steady state to be established in
the graphene sheet, and to acquire enough intensity at low power.
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Table 29.4 Peak positions at 0.5% and 10% incident beam powers and frequency shift �ω (cm
−1) measured at ten different membranes

No. ω0.5% ω10% �ω

1 1583.55 1580.95 2.6

2 1581.82 1578.94 2.88

3 1587.35 1584.25 3.1

4 1585.15 1581.89 3.26

5 1586.38 1582.24 4.14

6 1584.17 1580.84 3.33

7 1583.55 1580.35 3.2

8 1584.56 1581.9 2.66

9 1585.57 1581.96 3.61

10 1584.81 1581.26 3.55

Table 29.5 Heat conductivity κ at 10% incident beam powermeasured for ten different membranes

No. κ (W/mK) No. κ (W/mK)

1 2292 6 2069

2 1922 7 1828

3 1439 8 1789

4 1862 9 2240

5 1651 10 1678

Table 29.6 RT heat conductivity of graphenemeasured using Raman thermometry and comparison
with the theoretical works

κ (W/mK) Comment Ref

4419 0.01% 13C [5]

2792 1.1% 13C [5]

2197 50% 13C [5]

2826 99.2% 13C [5]

600 – [9]

1877 – This work

2622 Kinetic theory [29]

1910 Theory, in plane graphite [13]

The measured peak shift and the heat conductivity are presented in Tables29.4
and 29.5, respectively. The obtained values lead to a mean value of 1877W/mKwith
standard error σstd/

√
N = 252 W/mK, where σstd2 is the dispersion and N = 10 is

the number of measurements.
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Fig. 29.6 Dependence of
heat conduction coefficient
of size of graphene disks at
near-RT’s. The graph is
plotted using data from [2]

From [2] (see Fig. 29.6), it is difficult to say anything about size dependence of
heat conductivity at room temperature due to the large error. It is concluded [2] that
the effect of size dependence is not observed due to high uncertainty, defects, and
other impurities of membranes.

29.3.2 Scanning Thermal Microscopy

Another technique to study heat conduction in materials is Scanning Thermal
Microscopy (SThM), which is based on Atomic Force Microscopy (AFM). The
temperature scan is achieved by measuring the changing resistance in a wire running
through an AFM probe. A conventional design of the device is given as follows. A
wire made of material with known thermal coefficient (e.g., platinum) is passed thor-
ough the AFM cantilever tip and acts as a nano-thermometer (see Fig. 29.7c, d). The
device consists of voltage source (1.), variable resistor (2.) with electrical resistance
R, platinum sensor (3.) with electrical resistance r, digital voltmeter, which is read
by a computer software, and the ammeter (5.) (see Fig. 29.7a) the output of which
can be seen at the digital readout on the thermoresistor signal amplifier, Fig. 29.7b.
Photos, Fig. 29.7b, c, were taken in TU Berlin, Chair of Continuum Mechanics and
Constitutive Theory.

Let us consider the working principle in more detail. The goal is to measure the
resistance of the platinum wire r. A voltage source provides a constant voltage Uin.
By using the knob (2.) the resistanceR in the circuit can be changed. Then the current
in the system is calculated using the following formula:

I = Uin

r+ R . (29.23)
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Fig. 29.7 Thermoresistor measurement system layout
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If R >> r the changes of thermometer resistance r (3.) do not affect the current
I significantly. Thus by changingR it is possible to control the value of the current.
The voltage source (1.) and the resistance (2.) connected in series can be considered
as a constant current source if the auxiliary resistance connected to the system is
relatively small compared to R. Thus the current in the system can be calculated
using the following relation and the ammeter (5.):

I ∼ Uin

R . (29.24)

The desired resistance r at the tip (3.) is defined by the voltage drop measured by
the digital voltmeter (4.) The advantage of the scheme is that any voltage dropped
across the main current-carrying wires will not be measured by the voltmeter, and
so do not enter into the resistance calculation at all. The sought resistance is then
measured as follows:

R = Voltmeter indication

Ammeter indication
. (29.25)

One can set the current constant and monitored directly from ammeter, and map
only the change of the voltage as a function of position of cantilever (x, y). Let us
indicate the voltmeter indication by U (x, y) and the ammeter indication simply by
I . Then the electrical resistance map across the surface is R(x, y) = U (x, y)/I .
However, one is interested in the temperature map. The temperature of the tip can
be found by using the formula

R = R0(1 + αT ), T (x, y) = r(x, y)/R0 − 1

α
= U (x, y)/IR0 − 1

α
, (29.26)

whereR0 is the resistance at 0 C◦, and α = 0.0038C−1 is the thermal coefficient of
Platinum.

If the applied current is lowanddoes not cause Joule heating the device is operating
in a passivemode and if tip and the surface are in thermal equilibrium the temperature
of the surface is measured.

If the applied current is higher the device acts as a heat source and the heat is
absorbed by the surface. Such a regime is called active. By knowing the supplied
power, the theoretical model of absorption, and the read temperature of the tip, one
can calculate coefficient of heat conductivity. This measurement is based on the
equation

Rth Q̇ = �T = Tp − Tamb, (29.27)

where Rth[K/W ] is thermal resistivity,�T is the temperature difference between the
point of power generation Tp and the heat sink, and Q̇ is the heat transfer rate or the
power of heat generation. Conventionally, it is the difference between temperature of
the tip, which is measured from (29.26) and the substrate, which is held at ambient
temperature Tamb. Two techniques are used tomeasure Rth: (a) a feedback loop is used
to keep Tp constant by applying different heating power Q̇, and then the resistance is
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inversely proportional to measured power Rth = const/�T and (b) using a constant
heating power and measure temperature Tp of the probe, and then the resistance is
proportional to the measured temperature difference Rth = const �T .

The power of heat generation Q̇ is caused by Joule’s heating of the tip and can be
calculated directly from measurements Q̇ = IU :

Q̇ = Voltmeter indication × Ammeter indication. (29.28)

The measured thermal resistance usually combines contributions from several
elements. For example [8], it can be

Rth = Rt + Rc + Rspr, (29.29)

where Rt is thermal resistance of probe tip, Rc is the contact resistance between tip
and sample, and Rspr is the thermal spreading resistance into the specimen. We are
usually interested in Rspr. Difficulties can occur during the determination of Rc and
Rt when the heat conduction is anomalous. The advantage of this technique is a high
spatial resolution (up to 17nm as reported in [8], 20nm in [12]).

A correlation between thermal resistance and heat conductivity in central symme-
try can be obtained from the solution of the heat conduction problem in cylindrical
coordinates as a function of radial coordinate r . A thick-walled cylinder is held at
temperature Tc at the inner surface, T |r=r0 with a heat flux q, ∂T/∂r = −q/κ. The
solution of a homogeneous Laplace equation in cylindrical coordinates

1

r

∂

∂r

(

r
∂T

∂r

)

= 0 (29.30)

is
T (r) = −qr0

κ
ln

r

r0
+ Tc. (29.31)

Let us denote the temperature of the outer boundary r = R by Tb, �T = Tc − Tb.
Then from (29.31) the following relation holds:

q = κ

r0 ln(R/r0)
�T . (29.32)

The heat transfer rate is then calculated as the product of the heat flux and the area
of inner surface S = 2πr0d. This leads to

Q̇ = 2πdκ

ln R/r0
�T = 1

Rth
�T ⇒ κ = ln R/r0

2πdRth
. (29.33)

In [8, 12], SThM was applied to measure heat conduction phenomena on a sub-
micron scale, see Figs. 29.8 and 29.9. The presence of ballistic heat conduction
was observed in both references. Both show a logarithmic trend of heat conduc-
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Fig. 29.8 Dependence of
thermal conductivity on
radius of graphene disk
at RT. Graphs are plotted
using data from [4, 12].
Dashed lines were added for
convenience

Fig. 29.9 Dependence of
thermal conductivity
graphene disk + probe tip
at RT. Values are calculated
with Eq.29.33 with thermal
resistances taken from [8]. A
dashed line was added for
convenience

tion divergence on scales <∼ 800 nm. In both papers, an interesting decrease of
heat conductivity was observed at larger scales. This effect may be attributed to the
very small size of the heat source. Figure29.9 shows the values of heat conduction
obtained by Eq. (29.33) with thermal resistances including all contributions as shown
in Eq. (29.29) taken from [8]. It was shown in [8] that the thermal resistance of the
substrate is several magnitudes lower than the measured full resistance. Thus it can
be neglected. It was shown that the value of the tip-sample contact remains constant.
Thus it does not influence the size dependence. Yet no absolute values were given.
This explains the extremely low values obtained of heat conduction (with respect to
what presented in literature for graphene) in Fig. 29.9, since it reflects the conduction
of graphenemembrane + tip-sample contact. The absolute values reported by [12] are
about 600W/mK, which is relatively low when compared to most results obtained
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with optothermal techniques, but it corresponds to the result in [9]. A numerical
study [4] confirms the logarithmic trend observed in experimental investigations [8,
12] but does not represent non-monotonic behavior since only systems smaller than
800 nm were studied. Absolute values of thermal conductivity [4] (∼300 W/mK
the largest value corresponding to largest investigated sample size) are larger than
reported in [8, 12] and closer to values predicted by theory [13] and optothermal
technique (see Table29.6).

29.4 Conclusions

A scientific group from the Technical University of Berlin assessed the possibility
of experimental measurement of the thermal conductivity in the case of anoma-
lous heat transfer corresponding to the theoretical estimates of scientists from the
laboratory “Discrete Models of Mechanics” IPME RAS within the framework of
the international cooperation RSF-DFG. A theoretical approach which allows to
define thermal conductivity in transient ballistic case and compares it with steady
state measurements was proposed. The results showed that the heat conductivity is
power dependent on size (in this particular case, the dependence is linear), such that
κ ∼ R, Eq. 29.17. This contradicts to a logarithmic dependence reported in a number
of experimental and theoretical studies for anomalous heat transport. On the other
hand, some studies [29, 31] also predict a power dependence of heat conductivity in
2D structures at very low temperatures and spatial scales. This raises the question as
to whether a logarithmic dependence corresponds to ballistic or some intermediate
(between ballistic and diffusive) quasi-ballistic regime of heat conduction. This, in
principle, gives rise to further theoretical and experimental challenges.

Experimental techniques that can be used for investigation of the size dependence
were also considered in this paper. Raman thermometry is a promising candidate for
such studies. However, the effect of power size dependence or any size dependence
was not yet observed in the reviewed literature. The difficulty lies in the relatively
large minimum size of the laser spot limited by optical diffraction, which is com-
parable to the phonon mean free path in graphene at RT and in the low-temperature
resolution, which causes high uncertainty. A value of∼1900W/mKwas obtained by
using this method in the current work.

Scanning thermal microscopy is another suitable method. Its main advantage is
high spatial and temperature resolution. Complications arise in determining addi-
tional thermal resistances contributions, along with the sought thermal resistance of
the specimen, to the measured value. By using this technique a logarithmic depen-
dence of the heat conduction coefficient on size was observed at the sub-micron
scale.

The goal of further research is to measure the size dependence of heat conduction
in circular graphene disks using the aforementioned methods and to compare it with
the theoretical predictions presented in the current work.
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