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Abstract—In this paper exact analytical solutions for the equation that describes anomalous heat propagation in
aharmonic 1D lattices are obtained. Rectangular, triangular and sawtooth initial perturbations of the temperature
field are considered. The solution for an initially rectangular temperature profile is investigated in detail. It is shown
that the decay of the solution near the wavefront is proportional to 1/ Jt. Inthe center of the perturbation zone the
decay is proportional to 1/¢. Thus, the solution decays slower near the wavefront, leaving clearly visible peaks that

can be detected experimentally.
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1. INTRODUCTION

Nowadays the investigation of nonlinear thermome-
chanical processes in low-dimensional structures at-
tracts high interest due to the rapid development of nano-
electronical devices based on materials with microstruc-
ture [ 1-4]. Achievements in nanotechnology allowed for
an experimental proof of the wave nature and finite pro-
pagation velocity of thermal perturbations [5, 6]. The
study of such phenomena can result in a universal theory
of heat conduction, applicable both on micro- and mac-
roscales.

The classical heat equation is a parabolic partial dif-
ferential equation that describes the distribution of tem-
perature in a given spatial region over time:

T =BT, (1)
where T'is the temperature, B is the thermal diffusivity,
the dot (*) denotes differentiation with respect to ¢, and
the prime ()" denotes differentiation with respect to x.
The classical heat equation is derived on the basis of
Fourier’s law [7, 8]:

q=-xVT, ()
where K is the thermal conductivity, ¢ is the heat flux,
and 7'is temperature. Practice shows that Fourier’s law is

well applicable to the description of heat processes on
the macroscale. However, Fourier’s law predicts an infi-
nite speed of signal propagation, which can be physically
paradoxical. A study of microprocesses, when the char-
acteristic length is proportional to several atomic bond
lengths, requires more complicated models of heat trans-
fer that account for a finite velocity of heat propagation.
Significant deviations from Fourier’s law occur in one-
dimensional crystalline structures [9]. Recent experi-
mental works of one-dimensional nanostructures reveal
the dependence of thermal conductivity on the structure
length [10]. Strong deviations from Fourier’s law are
experimentally shown for C and BN nanotubes [11].
Thermal anomalies for nanostructures can be used for
designing promising devices such as thermal diodes [4].

The anomalous nature of heat processes for one-di-
mensional lattices is demonstrated analytically by
Rieder et al. [12] who studied the problem of heat flow
between two heat baths. Numerous results on anomalous
heat transfer in low-dimensional systems are summa-
rized by Lepri et al. [8]. In describing such processes,
hyperbolic heat Eq. [13, 14]

T +T =BT, (3)
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where 7 is the relaxation time, provides an alternative to
classic heat Eq. (1). Equation (3) describes the finite
speed of temperature propagation. However, it still has
serious difficulties in describing heat transfer in one-di-
mensional crystals since no unique relaxation time can
be determined [15].

A promising approach for the description of unsteady
heat processes in 1D crystals was presented elsewhere
[16—18]. By using correlational analysis, the initial sto-
chastic problem for individual particles is reduced to a
deterministic problem for statistical characteristics of
the crystal. Its solution gave continuum Eq. (7) describ-
ing anomalous heat transfer in 1D harmonic lattices [17].
In the present paper we will derive exact analytical solu-
tions for this equation, in particular, for rectangular, tri-
angular and sawtooth initial distribution. Such proper-
ties as decay and asymptotics of the wavefront will be
investigated in detail by the example of a rectangular ini-
tial perturbation. These results can be used for the analy-
sis of anomalous heat transfer in more complex systems,
such as 1D crystals on the elastic substrate [19] and 2D
and 3D crystals [20]. The understanding of anomalous
heat conduction is of special importance for the analysis
of the experimental data that are to be obtained in the
nearest future due to the rapid development of nanotech-
nologies.

2. LOCALIZED HEAT PERTURBATIONS
IN A HARMONIC CHAIN

The harmonic chain is a simple and effective model
for investigating anomalous heat phenomena. According
to the previous work [17], let us consider an infinite har-
monic chain. Each particle with mass m is connected to
its neighbor by Hookean springs with stiffness C. The
equation of motion of the particles reads

def
i, = 02, —2u, +u,,,), 0, =~/C/m, 4)
where u, is the displacement of a particle with index k.
The following initial conditions are considered:

Uy == 0, tt]=g= 6 (X) Py 5 (%)
where p, is the independent random variables with zero
expectation and unit variance and G is the variance of the
initial particle velocity. The variance is a slowly chang-
ing function of the spatial coordinate x = ka, where a is
the initial distance between neighboring particles. Such
initial conditions can be realized by ultrafast heating, for
example, with a laser [21]. Let us introduce the kinetic
temperature 7'as

kT = m(iy)?, (6)
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where (...) is the operator averaging over realizations and
kg 1s the Boltzmann constant. The continuum partial
differential equation for the kinetic temperature was pre-
viously obtained [17]:

T+T/t=cT, (7
where c is the speed of sound in a one-dimensional crys-
tal. Equation (7) describes the time evolution of the spa-
tial temperature distribution in the chain. The following
initial conditions for Eq. (7) correspond to stochastic ini-
tial problem (5):

T|2=0, T o= Ty (). )]
Problem (7), (8) can be solved in the integral form [17]:

t
T(t x)=1n | Ty(x—cn)/NP -7 dr. )
-t

Equation (7) is a particular case of the Darboux equa-
tion [22]. This type equation was earlier studied in con-
text with spherical averages for solutions of the 2D and
3D wave equation, though being unstudied in relation to
heat conduction phenomena. Equation (7) looks similar
to hyperbolic heat Eq. (3), but it has a variable coeffi-
cient. This feature is due to anomalous heat transfer in a
one-dimensional chain. From the form of Eq. (7), it may
appear that it has a singularity. However, it does not mat-
ter because the equation should be solved with initial
conditions (8) that exclude a singularity. The absence of
singularity is confirmed by general solution (9) and spe-
cific solutions that will be considered below.

This paper is dedicated to finding exact analytical so-
lutions of Eq. (7) for cases when the initial thermal dis-
tribution function 7;(x) is a localized function of coor-
dinates x:

0, x<-l,
Ty (x) =< D(x), =I<x<I,

0, x>1,

(10)

where @(x) is an arbitrary function and /is the half width
of localized perturbation. Such initial temperature distri-
bution can be experimentally derived by superfast laser
heating of a localized region of the chain.

3. RECTANGULAR PERTURBATION
3.1. Solution

Let us consider a rectangular initial temperature dis-
tribution

Ty(x) = AH(x+1)-H(x-1)), (11)
where H(x) is the Heaviside function
e ={ 0 (12)
x =
1, x>0,
PHYSICAL MESOMECHANICS Vol.20 No.3 2017
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A is the amplitude of the initial temperature distribution.
A substitution of formula (11) into solution (9) gives

By substltutmg the earher obtained solutlon for a single
Heaviside initial impulse [17]
def
T(xa t) = TS(xa t)

0, x<-—ct,

= é(n—arccosij, —ct<x<ct, (14)
T

ct
A, x=ct.

to (13), we obtain the solution of the given problem as a
linear combination of these solutions. Solution for posi-

tive x:
1<T):

0, /+ct<x,
T(x,t)= éarccos(x—_tlj, [—ct<x<l+ct, (15)
T c

A, 0<x<]—ct,
127!

0, ct+1<x,

A x—1
—arccos——,ct—I[<x<ct+l,
T ct

T(x’ t): 4 oy _ (16)
_(—arccos_ + arCCOS_ja
T ct ct
0<x<ct-1,

where 1, =//c. For negative x, the solution, being sym-
metric, can be solved as 7(x, ¢) = T(—x, ?).
For comparison, we consider the same initial prob-
lem for the classical heat equation:
T =BT" (17)
The solution for an initial Heaviside step temperature
distribution has the form [23]

t/tg 6

8 -10 x/l

T(x, 1) =1/2(1+erf(x/\/4B1)), (18)
where erf (x) is the Gaussian error function. Then, the
solution of initial problem (8),(11),(17) s

T(x, t)— p XL Lop Xl (19)
ﬂ 2 Japr

The time evolutlon plots are shown for the solution of
anomalous heat equation (7) in Fig. 1a and Fourier equa-
tion (17) in Fig. 1b. Let us compare the two solutions.
The Fourier solution has a peak at x = 0 which decays ex-
ponentially. In the case of anomalous heat conduction,
the solution decays in the area near x = 0 more rapidly
than near the wavefront, thus forming two peaks propagat-
ing in the positive and negative directions with coordinates
x=—l+ctandx=[/-ct.

3.2. Decay Behavior

Let us consider the decay behavior of solution (16) at
x = 0. We perform a series expansion of the solution

T(t,0)= é[n -2 arccosit} =2e+0(e%), (20)
T c

where € =//(ct) is the small parameter.
Now we turn to the decay behavior of the peaks x =/—
ct and x =—[ + ct. From formula (16) it follows that
T(t,—1l+ct)=T(t,[—ct)

= é{n - arccos(2 —lﬂ =2Je + 0(83/2). 2D
T ct

Summarizing the above, we derive

[—>o0 1
T 0) ~ 2e~-,
t (22)
t—>o0 1
T(t,—1+ct)=T(t,1-ct) ~ 2Je ~—.
N

Thus, the solution decays more faster in the area between
wavefronts (proportional to 1/¢), than near the wave-
front (proportional to 1/ Jt ). Thus, the peaks remain

strongly pronounced even for long times.

Fig. 1. Time evolution for solutions for a rectangular initial perturbation: anomalous (a) and classical heat conduction (b).
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3.3. Envelope Curve for the Peaks

Solution has two peaks travelling in the positive and
negative directions with speed c. As the solution is sym-
metric, we will consider only the peak with the coordi-
nate x = ct — [. We shall consider the curve drawn by the
peak of the solution as it travels in positive direction. By
substituting 7 = (x+/)/c into formula (21), we derive
the expression for the envelope curve

2
Ty ()= é{n - arccos(—l - lﬂ
T x+!/

For any x, we have T(x)<T,(|x|). The envelope
curve is plotted in Fig. 2. Expression (23) decays as
1/ \/; , which agrees with the statement that the solution
decays as 1/ Jt near the wavefront (the wavefront trav-
els with constant speed).

(23)

3.4. Asymptotic Behavior near the Wavefront

Letus consider solution (16) near the wavefront at long
times ¢. Assume & = (—x+ct)/l. Forxe [~ +ct, [+ ct]
we have

t—o0

T, 1) =%arccos[l—é(§+l)} ~ %\/%«/E'&l, (24)

where (§+1)/(ct) is the small parameter used for expan-
sion. Forx € [[—ct,—[ + ct] we acquire

TE, )= é(—arccos[l—%(&—l)}
T c

+arccos[1 —i(§+ I)D
ct

[—>o0 l
= e T - B, (25)
Functions (24) and (25) have the form
:é\EF@' (26)
m\ct

The relation means that the shape of the solution
shrinks vertically with time, but it does not change hori-
zontally. Dependences (16), (24), and (25) with the cor-
responding dimensionless time parameter ¢/t = 100 are

7/4

. _ Exact solution

0.8 ~Envelope

1 f/TO =2
_t/TO =3 _

0.4 ST

0.0 T " } }
0 1 2 3 4 x/l

Fig. 2. Envelope curve for peaks of the solution.
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shown in Fig. 3. Asymptotic solutions (24) and (25)
achieve peak values of T for & = 1, where F(£)=+/2.
The solution at this point remains continuous but not
smooth (the derivative of the solution has a jump).

4. TRIANGULAR PERTURBATION

In order to obtain the solution for a triangular initial
function, we consider the following auxiliary problem
where the initial temperature distribution is a linearly
heated semispace:

0, x<O0,
o]

Bx, x=0,

where B = A4/I is the constant of proportionality. A sub-
stitution of (27) into (9) gives the solution for |x| < ct

27)

s
B def
+2NPA =5t = 1),
s

and for |x| > ct the initial temperature distribution is unal-
tered.

Now we pass to the problem on a triangular initial
hear distribution, which can be expressed by the follow-
ing piecewise function:

0, x<-I,

(x+D)B, —1<x<0,
(=x+DB, 0<x<],
0, x=1.

The solution for the initial temperature distribution
(29) will be a linear combination of solutions for the lin-
early heated semispace. Denote solution (28) by 7. The
solution for initial distribution (29) will then be as fol-
lows:

T, x)=T,(t,x=)+T,(t,x+1)=2T,(t,x). (30)

The solution is symmetric: 7(x, £) =— 7{(x, t). The part
corresponding to positive x has the following piecewise
form:

1 . 1
T(x,t)= Bx(—arcs1nx+5)

(28)

Ty (x)= (29)

— Exact solution
2 {= = Solution (24) -="
E -_._Solution(25) ’,f”
=l I3 B <
\(\L I
\‘G 1 1 : R
= L -
N |
] 0 1 2 3

Fig. 3. Exact and approximate solutions for rectangular
initial temperature distribution.

PHYSICAL MESOMECHANICS Vol.20 No.3 2017



LOCALIZED HEAT PERTURBATION IN HARMONIC 1D CRYSTALS: SOLUTIONS FOR AN EQUATION 309

1<T,/2:
f(x+D)-2f(x), 0<x<et,
(—x+DB, ct<x<l-ct,

T = DB+ ft D) I—ct<xsirer, OD
0, /+ct<x,
T/2<5t<1,: T(2,x)
(x+1)B-2f(x), 0<x<I-ct,
_ (x+DB+ f(x—=1)-2f(x), [—ct<x<Zct, (32)
(—x+DB+ f(x—=1), ct<x<I[+ct,
0, /+ct<x,
t271y: T(t,x)
fx+D+ f(x=D)-2f(x), 0<x<-I+ct,
| &x+DB+ f(x=D)=-2f(x), ~[+ct<x=Zct, 33)

(—x+DB+ f(x—=1), ct<x<l+ct,
0, /+ct<x.

The derived solution is represented graphically in
Fig. 4. Unlike the solution for a rectangular initial distri-
bution, which has a wavefront with vertical tangent and
infinite derivative and a break of the temperature profile
at the peak, the solution for a triangular distribution has
a smooth beginning at the wavefront and smooth behav-
ior at the peak.

5. SAWTOOTH PERTURBATION

We consider an initial heat distribution as a sawtooth
distribution. It can be written in the following form:

0, x<-I,
Ty(x)=1x+1, —=1<x<0,
0, 0<x.

Initial conditions (34) can be written as linear combi-
nations of a step function and linearly heated semispace.
Then, the solution for sawtooth initial distribution (34)
can be obtained from the corresponding combination of
the solutions for a step initial distribution 7(x, #) and a

(34)

- T o
- ~o

7/4 I

Ss

~

T
1
1
1
1

S
|
1
1
1
1

N
1~ o
1
1
1
1

S
1S~
1
1
1
1

— ~

0
375 x/1

Fig. 4. Time evolution of the solution for a triangular
initial perturbation.
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linearly heated semispace initial distribution 7} (x, #):
T, x)=T,(x+1,t)+ T, (x, )+ Tg(x, ).  (35)
It has the following piecewise form:
1<ty T(x, 1)
0, x<-I—-ct,

f(x+1D), —l-ct<x<—l+ct,
=4Bx, —l+ct<x<—ct, (36)
Bx—f(x)—éarccosi, —ct<x<ct,

T ct

0, x>ct,

t21y: T(x,t)
0, x<—ct-|I,
f(x+1), —ct—1<x<—ct,
f(x+l)—f(x)—£arccosi,
_ T ct (37)
—ct<x<ct-lI,

A X
Bx— f(x)——arccos—, ct—[<x<ct,
T ct

0, ct<x.

The solution is graphically illustrated in Fig. 5. The
left wavefront has a smooth beginning and an infinite de-
rivative at the peak. Contrary, the right wavefront has an
infinite derivative at the beginning, smooth behavior at
the peak, and a horizontal derivative at the peak.

6. CONCLUSION

The process of heat transfer in a 1D infinite harmonic
chain was investigated. The evolution of localized initial
distributions was considered. Solutions for the previ-
ously derived equation [17] describing anomalous heat
conduction (7) were obtained. Exact analytical solutions
for rectangular, triangular and sawtooth initial impulses
were considered. It was shown that solutions for Eq. (7)
unlike solutions for classical heat equation have a strongly

l/TO 2 x/1

Fig. 5. Time evolution of the solution for a sawtooth ini-
tial perturbation.
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pronounced wavefront. For the rectangular case, it was
shown that the decay of the solution near the wavefront
is proportional to 1/ Jt and near zero the decay is pro-
portional to 1/z. Thus, the solution decays slower near
the wavefront, leaving clearly visible peaks. The shape
of the wavefront is described by a function inversely pro-
portional to the square root of time and has the form

r=4 \/ZF(Q,).
T\ ct

The solution for a triangular initial temperature dis-
tribution has a smooth beginning at the wavefront and a
smooth behavior at the peak. In the case of a sawtooth
initial distribution, the solution is asymmetric: the left
wavefront has a smooth beginning and an infinite deriva-
tive at the peak, and the right wavefront has an infinite
derivative at the beginning, smooth behavior and hori-
zontal tangent at the peak.

The obtained solutions demonstrate the wave behav-
ior and power decay. This differs from the results obtain-
ed from the solutions of classic heat equation (1) (diffu-
sive behavior, exponential decay) and hyperbolic heat
equation (3) (wave behavior, exponential decay). Such
properties of the obtained solutions can be used for ana-
lyzing the experimental data and choosing the right mo-
del for the description of the heat processes.
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