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Abstract The kinetic theory is widely used in the description of thermal transport at the micro- and nanoscale.
In the theory, it is assumed that heat is carried by quasi-particles, obeying the Boltzmann transport equation.
These quasi-particles are sometimes associated with phonons. However, since phonons are not localized in
physical space, they cannot play the role of the quasi-particles used in the kinetic theory. In the present
paper, we employ another interpretation of quasi-particles, namely wave packets. Our derivation is carried
out for an infinite harmonic chain with a given initial temperature distribution. An exact formula describing
the time evolution of the kinetic temperature of the chain is derived. A transition from the exact solution to
a continuum limit is performed. It is shown that the resulting continuum solution coincides with the solution
of the collisionless Boltzmann equation. The transition yields wave packets, localized in space and moving
with group velocities. Therefore, the wave packets can be associated with quasi-particles. It is shown that the
quasi-particle has finite lifetime and that its position is determined with some uncertainty.

1 Introduction

The derivation of the laws governing heat transport in solids is one of the key problems in modern mechanics
and solid-state physics. In continuum mechanics, heat transport is modeled by the formulation of proper
constitutive relations. In particular, at the macroscale, the Fourier law, assuming a linear relationship between
heat flux and temperature gradient, is widely used. However, it has been shown in many theoretical [1-4] and
experimental [5-8] works that the Fourier law may be violated at the micro- and nanoscale. Therefore, new
constitutive relations, describing nanoscale heat transport, are required. A possible method for the derivation
of these constitutive relations consists of using lower scale models. In the present paper, we consider two of
these, specifically lattice dynamics and kinetic theory. Our main aim is a discussion of the link between these
models.

In lattice dynamics, a material is represented by a set of interacting particles (atoms). Heat transport
is associated with the propagation of thermal vibrations of these atoms' (see, e.g., [9]). The evolution of

1 In the present paper, heat transport in dielectrics is considered, and therefore the contribution of electrons to heat transport is
ignored.

2 In harmonic crystals, the particles interact via linearized forces.
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the temperature profile is described via a solution of the lattice dynamics equations, with initial conditions
corresponding to the initial temperature profile. For perfect (defect free) harmonic? crystals, this problem
is solved analytically (see, e.g., papers [10—17]). This approach allows the definition of all the quantities of
interest (kinetic temperature, heat flux, etc.) rigorously and the formulation of all assumptions explicitly.

In real crystals, nonlinearity, defects, and interfaces are usually present. Analytical solutions of the lattice
dynamics equations are then generally not available. In this case, the kinetic theory of heat transport, originally
formulated by Pierls [18], can be used. In kinetic theory, it is assumed that the heat is carried by a set of
moving quasi-particles. The motion of the quasi-particles (evolution of their distribution function) is governed
by the Boltzmann transport equation. Free motion of the quasi-particles corresponds to the ballistic heat
transport regime, which is realized in harmonic crystals. The influence of lattice defects and nonlinearity of the
interatomic interactions on heat transport are modeled by interactions (collisions) of the quasi-particles. Due to
collisions, the quasi-particles may perform Brownian-type motion or the Levy walk. The former corresponds
to the Fourier heat transport regime, while the latter corresponds to anomalous heat transport [19-21]. Kinetic
theory is a valuable tool for the solution of many practical heat transport problems, which are beyond the range
of applicability of the analytical solutions of the lattice dynamics equations (see, e.g., review [22]). However,
proper links between lattice dynamics and kinetic descriptions of the heat transport are yet to be developed.
In particular, the physical meaning of the quasi-particles, used in kinetic theory, is yet to be established.

In literature, quasi-particles are usually associated with phonons. The notion of the phonon is linked to
the energy of harmonic plane waves in crystals. Since the harmonic waves are “infinite,” the phonons are
not localized in physical space and cannot be regarded as quasi-particles. This fact was clearly demonstrated
by Spohn [23]. In [23], it was shown that the distribution function for quasi-particles coincides with the
Wigner function. An equation describing the evolution of the Wigner function for harmonic crystals was
derived by Mielke [24], while a generalization for the weakly anharmonic case was carried out in [23, 25].
However, in these papers, no explicit expressions for the individual quasi-particles have been presented. We
employ another approach. Instead of introducing an additional mathematical object (the Wigner function) and
obtaining governing equations for this object, we derive all results directly from the exact expression for the
kinetic temperature.

The difference between phonons and quasi-particles, used in kinetic theory, was first noted in the book
by Frenkel [27], where the notion of the phonon was introduced.? It has been suggested that the role of the
quasi-particle can be played by a wave packet, i.e. a group of harmonic waves with close wave numbers. Like
quasi-particles, wave packets are localized in space and move with group velocities. However, to the best of
our knowledge, a transition from the exact solution of the heat transport problem to an approximate solution in
terms of wave packets has not yet been presented in the literature. Therefore, this important issue is addressed
below.

The aim of the present paper is to link lattice dynamics and kinetic theory descriptions of heat transfer. We
consider the simplest model of a crystal, namely a harmonic chain. In Sect. 2, equations of motion and initial
conditions, corresponding to the initial temperature distribution, are formulated. In Sect. 3, an exact expression
for the kinetic temperature is derived. In Sect. 4, the transition from the exact solution to a continuum limit
is carried out. The transition yields wave packets, which can be interpreted as quasi-particles. The properties
of the quasi-particles are discussed. Additionally, in Sect. 4, we derive an approximate expression describing
the changes in the temperature due to the equilibration of kinetic and potential energies. To compare with the
kinetic theory, we present the derivation and solution of the collisionless Boltzmann equation in Sect. 5. This
solution is compared with results from Sect. 4. In the concluding Section, we discuss the limitations of the
kinetic description.

2 Statement of the problem

In this Section, we formulate an unsteady heat transfer problem for a one-dimensional harmonic chain. We
present the equations of motion and initial conditions, corresponding to some temperature distribution and
zero initial heat fluxes.

3 Sometimes, it is stated that the word “phonon” was introduced by I.E. Tamm. However, in papers by Tamm, we were only
able to find the notion of “elastischen Quanten” [26], while Frenkel was using the word “phonon” in his book [27].
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Unsteady ballistic heat transport

We consider a one-dimensional chain consisting of N identical particles* of mass m, connected by linear
springs. The equations of motion are written in the form>

n
mv; = Z Cj(uiyj —uj)— Couj, v; =u;, (D

j==—n

where C; = C_; is the stiffness of the spring connecting a particle with its jth neighbor, Cy is the stiffness of
the elastic foundation, and 2x is the total number of neighbors connected to the particle. Equation (1) is solved
under periodic boundary conditions u; = u;y.

Initially, the particles have random velocities and zero displacements:

uio =0, vio=o;

kg T?
, (ai>:0» <Oti0!j>=5ij, (2
m
where «; are uncorrelated random numbers with zero mean and unit variance, Tl.0 is the initial kinetic tem-
perature of the particle (see Definition (3)), kg is the Boltzmann constant, (...) stands for the mathematical
expectation, and §;; is the Kronecker delta. We note that under conditions (2) the initial heat flux is equal to
zero at each point of the chain. The initial conditions (2) can be considered as a result of the heating of a crystal
by an ultrashort laser pulse [28, 29].

We consider an infinite number of realizations of system (1), with random initial conditions (2). The main
quantity of interest is the kinetic temperature defined as [10]

kT, = m<v,2> (3)

In the literature, different definitions of temperature (e.g., kinetic temperature, configurational temperature,
etc.) are used. These definitions usually coincide only at (or close to) thermal equilibrium. We refer to paper

[30] for a detailed investigation of the differences between the temperatures in nonequilibrium simulations.
We use the kinetic temperature because it has clear physical meaning and is easy to compute.

3 An exact solution of the heat transfer problem

In this Section, we derive an exact expression for the kinetic temperature by using a solution of the initial value
problem (1) and (2).

3.1 An exact solution of the dynamic equations

The solution of problem (1) and (2) is derived using the discrete Fourier transform, defined as

N-1 N-1

. _j2mip 1 . jmip
u,,:Zu,-elN, ul-:ﬁ ipe' N, 4)
i=0 p=0
where i1, is the Fourier image of the displacements and i2 = —1. Applying the discrete Fourier transform (4)
to the dynamics Eq. (1), we obtain
. Co " C; pj
A 2. 2 Lo Cjo2
Vp = —wpilp, W, =— +4; S — (5)
=

Here, w, = wn_ is the pth eigenfrequency of the chain.

# Further, we consider an infinite crystal as a limiting case, where N tends to infinity.
5 Choosing parameters C j in (1), one can describe any linear pairwise interactions in the chain.
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Solving Eq. (5) with initial conditions corresponding to (2), and applying the inverse discrete Fourier
transform, we obtain the exact expression for the particle velocities®,

N-1 o
1 (2ml—ip
v, = N E vjocos(wpt)e N . (6)
J.p=0

Formula (6) shows that all particles with nonzero initial velocity contribute to the velocity of particle i. The con-
tribution of each particle is represented by a superposition of harmonic waves’ exp [i (a) pt +2m(i — j)p/N )]
The energies of these harmonic waves are usually associated with phonons [26, 27]. We note again that har-
monic waves (and phonons) are not localized in the physical space. Therefore, we seek another candidate for
the role of the quasi-particle used in the kinetic description. The question arises of whether it is possible to
find a localized object in the formula (6) for the velocities. We have no definite answer to this question and so
we will seek the localized object in the exact expression for the kinetic temperature, which is derived in the
following Section.

3.2 An exact expression for the kinetic temperature

An exact expression for the kinetic temperature is derived as follows. Substitution of the exact solution (6)
into the definition of the temperature (3) yields®

N-1
m 2ni—j)p :2m(i—k)s
kgT; = V2 Z <vjovko> cos(wpt)cos(wst)e' N e N 7
Jjopk,s=0
Using the identity m(v jOUkO> = kg TJQS k> which follows from the initial conditions (2), we obtain
N-1
1 0 2 . .
T, = T Z T; cos(wpt) cos(wyt) COS(W(Z — )(p— s)). 8)
Jsp,s=0

Formula (8) is an exact solution of the heat transfer problem for a periodic crystal.
For an infinite crystal (N — 00), the values 27p/N and 27ws/N can be replaced by ki, k» € [0;2m).
Replacing the sums with respect to p, s in (8) by integrals with respect to ky, k2, we obtain:

1T & o (" (7 .
P = o) E Tj / / cos(w(ky)t) cos(w(kp)t) cos((i — j)Ak)dkidko,
j=—00 e

9
C ", C; ik
2 0 j .2
w k——+42 —sin“ —, Ak =k — k>,
() ~ S1 ) 1 2

where w(k) is the dispersion relation.

Thus, the exact solution of the heat transfer problem for an infinite chain is given by formula (9), and the
majority of further results are derived from this formula. The formula shows that the contribution of particle j
to the temperature of particle i is determined by the double integral. In this expression, the integrand yields
the contribution of the two waves with wave numbers k;, k». Since the contributions of different waves are
not strictly positive, there may be some cancelation. Further, it is shown that in the continuum limit the main
contribution comes from waves with close values of the wave number k; & k», i.e., wave packets.

6 Since the velocity is real, the exponent in formula (6) can be replaced by the cosine function.

7 To prove this statement, one can replace the cosine by complex exponents.

8 Here, the relation (vi v,*> = <v12> was used, where * stands for the complex conjugate.

9 Since the expression in (8) is periodic, summation can be carried out over the interval, which is symmetric with respect to
zero. In the limit of an infinite crystal, the interval becomes a set of integers.
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4 Heat transfer in the continuum limit

The exact expression (9) for the temperature is hard to use, since it involves summation over all the particles and
adouble integral. Additionally, the formula contains an artifact: all particles, no matter how far, contribute to the
temperature of particle i at all times. This is a consequence of the infinite speed of propagation of disturbances
in discrete systems. Therefore, in this Section, we derive a simple approximate formula for temperature in
the continuum limit. This derivation yields an expression for wave packets, which may be interpreted as
quasi-particles.

4.1 Main hypotheses

In this Section, we formulate the main hypotheses used in the transition from the exact expression (9) to the
continuum limit.

We assume that the initial temperature distribution Tl.0 slowly changes in space. To formulate this hypothesis
more precisely, we separate the chain into intervals, each containing 2A N particles (see Fig. 1).

For each group s, we denote the central particle by js (in this case js41 = js + 2AN). The assumption
formulated above is then equivalent to the following relations:

Tl.omTﬁ, i €ljs—AN+1;j;+AN], (10)
aAN < L, (11)
AN > 1, (12)

where L is the macroscopic length scale. In other words, we assume that the function Tio is nearly constant at
distances of the order a AN, which is small compared to the macroscopic length L. We also assume that the
number of particles AN in each interval is large.

Formulae (10)—(12) are employed below for transition from the exact formula (9) to the continuum limit.

4.2 Discrete and continuum fundamental solutions of the heat transfer problem

In this Section, we derive a relation between the discrete and continuum fundamental solutions of the heat
transfer problem.

In papers [10-13], it has been shown that thermal processes in crystals with initial conditions (2) have
several timescales. At short times of the order of several atomic periods, the temperature oscillates with a high
frequency. These oscillations are caused by the equilibration of the kinetic and potential energies. At large
times, changes in temperature are caused by heat transfer. We use the following separation of these “fast” and
“slow” processes, as proposed in [13]:

oo oo
F S F 0 S 0
L=T/+T7 T = ) TFj T'= ) T)Sij.

j==o0 j==00

Fij= &T% f_ 7; /_ 7; cos((ky) + w(ka))1) cos(Ak( — j))dkidks, (13
5= [ 7; / 7; cos((@(kr) — w(k))r) cos(AkG — )dkidky.
T,
/\
2AN 2AN -
ARasame R A s

Fig. 1 Initial distribution of temperature in the chain
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Here, TiF describes oscillations of temperature due to the equilibration of energies (fast process), while TiS
describes heat transfer (slow process). We note that initially Tis = Tl.F = Ti0 /2.

Using assumption (10), we neglect changes in Tio within each interval of length 2A N. Formula (13) for TI.S
can then be rewritten as

+00 Js+AN +00
5=Y Y T1si;~ Y TPgli— j. AN)2aAN,

§=—00 j=ji—AN+1 §=—00
| AN (14)
i —js AN) = o D Sij
I=—AN+1

Function g(i — j;, AN) determines the contribution of the neighborhood of point j; to the temperature at
point i. It is convenient to use one more approximation in (14):

+00
TS ~ Z Ti(ljxg(js,ANﬂaAN, (15)

§=—00

where formulae (14) and (15) coincide in the continuum limit (see formula (17)).
We use assumption (11), stating that a AN is much smaller than the macroscopic length scale L, and
introduce functions Ts(x), To(x), g-(x), defined for all real x such that

1

Ts@) =17, Tolai) =T, ge(ai)= lim g(i, AN). (16)
@y 0

L

Strictly speaking, formula (16) defines the continuum temperature field only at particle positions. However,
since the temperature changes slowly, the values at other points can be obtained by interpolation.
ForaAN/L — 0, the sums in formulae (14) and (15) are replaced by the integrals

o0

Ts(x) = / To(y)ge(x — y)dy = / To(x — y)gc(y)dy, (17

—0o0 —00

where the function g. is the fundamental solution of the heat transfer problem in the continuum limit.
Thus, formulae (14) and (16) show that the continuum fundamental solution is obtained by spatial averaging
of the discrete fundamental solution over the interval of length 2AN.

4.3 Transition to the continuum limit and emergence of wave packets

In this Section, we derive an expression for the continuum fundamental solution g. (see formula (16)), under
the assumptions AN > 1 and aAN < L. We show that the solution is represented by a superposition of
wave packets.

According to formula (16), the continuum solution, g., is a limit of function g, defined by formula (14).
We rewrite function g as

1 T T
st o) = [ [ costatin) — olkanneG. Ak, ANk
l_” TAN (18)
Ak, AN) = —— )" cos(Ak(j —1)).
v, Ak, 2AN
I=—AN+1

In “Appendix 2,” it is shown that ¢ is represented by
AV Ak : .
¢ = TSlnc(ANAk) cot > cos(jAk) +sin(jAk) |, (19)

where sinc x = sinx/x and cotx = cosx/sin x.
Further simplification is based on the properties of the function ¢ for AN >> 1.1Itis equal to one for Ak = 0
and Ak = 327, while at all other points it tends to zero as AN tends to infinity. Therefore, for large AN, the
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Fig. 2 Wave packet ¥ for g1 = 0 (left), g = 0.97 (right) and AN = 1 (dash-dotted line), 2 (dashed line), 10 (dotted line), and
50 (solid line). Since v is an even function of j + 'z, only positive values of the arguments are considered

main contribution to the integral (18) is given by the points Ak ~ 0 (k1 =~ k3). Using Ak as a small parameter,
we make the series expansions
d
w(k)) — o(ky) ~ Ako'(k)), o = %, @ =~ sinc(AN Ak) cos(j Ak). (20)

Then, employing formula (20) and substituting g1 = k1, go = k1 — k>, we rewrite formula (18) as!0

1 (" .y . /
g~ o [ [v(+ @ aN) + 9 (i - o/@or, AN) Jdar, @1
7 Jo
1 q1+m
Y(j+at AN) = — . cos[qz( i+ a/(ql)t)]sinc(quN)dqz. 22)

Here, the function v is a wave packet, carrying heat with group velocity ¢, = aw’. The wave packets arise as
a result of the averaging of the discrete fundamental solution over the interval of length 2AN.

The function v, for different values of AN and wave numbers ¢, is shown in Fig. 2. It can be seen that
the function v converges to the following expression as AN tends to infinity'!:

1 . ’
v (j+a', AN)z{MN’ alj+witl<all, (23)
0, alj+w't|> aAN.
The derivation of (23) is given in “Appendix 2.” Figure 2 shows that the rate of convergence is higher for small
values of the wave number ¢;. This faster convergence may be due to the fact that at small wave numbers the
waves are less dispersive.
In “Appendix 2,” it is also shown that for AN > 1, aAN < L, function i tends to the Dirac delta
function, i.e.

Y(j+o't)~ 8a(j+a't)). (24)

Then, taking the limit aAN/L — 0 in (21) and using definition (16), we obtain the continuum fundamental
solution

1 b g
gc(x) = E/, S8(x +cg(g)t)dg, ¢ = aw'. (25)

Formulae (21) and (25) show that the fundamental solution of the heat transfer problem is represented by a
superposition of the wave packets . In the continuum limit, the wave packets tend to be of delta-like shape

10 Here, the identity '(q1) = —a'(—q1) is used.
I For finite AN, the integral in formula (22) can be represented via the sine integral.
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and have a definite position in the physical space. The speed of a wave packet is equal to the group velocity,
which depends on the wave number. Therefore, the wave packets may be associated with the quasi-particles.

Note that the position of the wave packet is determined to an accuracy of the order of a AN . The width of
the packet in the Fourier space (i.e., range of wave numbers included in the packet) is inversely proportional
to AN. Therefore, the localizations in the physical space and the Fourier space are mutually exclusive.

4.4 Quasi-particle (wave packet) lifetime

Wave packets consist of waves with close (but not equal) wave numbers. We denote the maximum difference
of wave numbers in the wave packet by max(Ak). Due to dispersion, the speeds of waves in the wave packet
are different, and therefore the width of a wave packet grows over time. We introduce the “lifetime,” #,, of
a wave packet (quasi-particle), which is defined as the time required for a wave packet to increase its width
by aAN. In order to estimate the difference in wave speeds, we consider the first formula of (20). In this
formula, a quantity of the order of max(”) max(Ak)?t was neglected. The neglected difference in the wave
speeds is then estimated as a max(w’) max(Ak). From formula (19), it can be seen that max(Ak) ~ AN -1
The lifetime of a quasi-particle is then estimated as

) AN AN?
¥ max(w”)max(Ak)  max(w”)

(26)

In a medium without dispersion, the lifetime is infinite; otherwise, it is proportional to AN 2, Therefore, the
lifetime depends on the rate of change of the initial temperature profile Ty(x).

4.5 The general solution of the heat transfer problem

Using the fundamental solution (25), we construct the general solution for an arbitrary initial temperature
distribution Ty(x). Substitution of formula (25) into the integral (17) yields

1 b
Ts(x) = E/ To(x +cg(g)r)dg. 27)

Then, using approximations (10)—(12) in the exact solution (13), we obtain an approximate continuum expres-
sion (27) for the temperature. Strictly speaking, formula (27) is valid only for slowly changing temperature
profiles, satisfying conditions (10)—(12). However, numerical simulations show that it has reasonable accuracy
even for discontinuous functions, e.g., the Heaviside function (see, e.g., papers [10-12]).

The derivation of formula (27) using the kinetic theory is presented below.

4.6 Continuum expression for the “fast” part of the temperature

In this Section, we derive a continuum expression for the “fast” part of the temperature, TiF , describing the
equilibration of kinetic and potential energies (see formula (13)).

As in the previous Sections, under assumptions (10)—(12), we introduce continuum functions Tr(x), h.(x)
such that

Tr(ai) =T;", T =/ To(x — y)he(y)dy, hc(aj) = lim h(j, AN), (28)
—00 %—)O
h(j, AN) :8711%1 / / cos((w(ky) + (k) e(j, Ak, AN)dk;dks. (29)

The expression for &, is derived in the same way as formula (25) for g. (see Sect. 4.3). We use the fact that the
main contribution to the integral (29) for large AN is given by points k; & k». Then, using the approximate
formula (20) for ¢ and the following expansion:

w(ky) + w(k2) ~ 20(k1), (30)
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we represent function & by
1 4 .
h~ —/ cosLa(gq)N) ¥ (j, AN)dq;. (31)
2 0

It is seen that, similarly to g (formula (21)), function 4 is represented by a superposition of wave packets 1,
as defined by formula (22). However, in (31) the wave packets are static, and their amplitudes oscillate over
time. These oscillations are caused by exchange of energy among kinetic and potential forms.

Substituting (31) into the definition of /. (28), and calculating the limit, we obtain

8 g
he(x) = ﬁ/ cos(2w(g)t)dg. (32)
2 0
The subsequent substitution of formula (32) into formula (28) yields
T b
Tp = D& / cosw(q)r)dg. (33)
2 0

In the case of interactions between the nearest neighbors, this reduces to
1
Tr = ETO(X)JO(ZCUJ), (34)

where w, = +/C/m and Jj is the Bessel function of the first kind.'2

We now consider the range of applicability of formula (33). Our derivation is based on expansion (30),
in which the term ” (Ak)?/2 is neglected. Note that in formula (29) the neglected value is multiplied by
time ¢, which may be arbitrarily large. Therefore, the approximate formula (33) is only accurate as long as
the value ” (Ak)%t/2 is small. By using the same arguments as in Sect. 4.4, we show that formula (33) is
applicable only for ¢ < t,, where ¢, is given by formula (26).

Thus, in the continuum approximation, the evolution of the temperature field is described by (27) and (33).
In the case of a uniform distribution of initial temperature (7p = const), these formulae are exact, while in the
nonuniform case they are approximate. The formulae lose accuracy at times of order of .

5 Description of heat transport using the kinetic theory
5.1 Collisionless Boltzmann equation

In this Section, we present a simplified formulation of the heat transfer problem in the framework of kinetic
theory. In particular, the collisionless Boltzmann equation is derived. Though the equation is well known, we
have decided to include this detailed derivation in order to simplify comparison with the results obtained above
by the lattice dynamics approach.

In the kinetic theory of heat transfer, it is assumed that the heat in a crystal is carried by quasi-particles
moving with some speeds. A portion of the heat carried by a particle is regarded as an unrelated additional scalar
characteristic, which does not affect, for example, the particle velocity. Additionally, we assume that each quasi-
particle carries the same amount of heat. The temperature of an elementary volume is then proportional to the
number of quasi-particles in this volume. In fact, a one-dimensional motion of a gas consisting of collisionless
quasi-particles is considered. The temperature is thus assumed to be proportional to the concentration of the
quasi-particles.

We introduce the distribution function

frxow= lim =M
,x,v) = lim ,
Ax,Av—0 AxAv

(35)

where A M is the number of quasi-particles with coordinates and velocities in the intervals [x — %Ax; X+ %Ax]
and [v — %Av, v+ %Av], respectively. Given a known distribution function, the temperature is calculated as

T, x)= y/ f(t, x,v)dv, (36)

12 Formulae (33) and (34) were originally derived in the [10, 11] by entirely different means.
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where y is a proportionality coefficient.

We consider the balance of quasi-particles in a two-dimensional phase space of coordinates and velocities.
The change in the number of quasi-particles in an elementary phase volume dx dv from time 7 to time ¢ + d¢
is given by equation

(f@+dt,x,v) — f(t,x,v))dxdv = (f(t,x,v) — f(t, x +dx, v))vds dv. 37

Formula (37) shows that the number of particles changes due to flux through boundaries of the elementary
phase volume. A series expansion of the function f in formula (37) with respect to df and dx in the first
approximation yields

0 0
5f(t,x,v)+vaf(t,x,v):0. (38)

Here, formula (38) is the collisionless Boltzmann equation, which can be considered to be an infinite set of
independent wave equations. Then, the exact solution of Eq. (38) has the form

f(t, x,v) = folx —vt,v), 39

where fo(x, v) is the initial distribution function for the quasi-particles.

5.2 Evolution of an initial temperature profile

In this Section, we consider the evolution of an initial temperature profile Ty(x) in the crystal. The temperature
profile can be considered to be the result of some excitation of the crystal. We assume that initial heat fluxes are
absent and that the initial distributions of velocities at all spatial points are identical. The velocity distribution
depends on the properties of the crystal and is independent of excitation characteristics. Then, the initial
distribution function is represented by

Jolx, v) = To(x) n(v)/y, (40)

where Ty(x) is the initial temperature profile and 1 (v) is the distribution of the quasi-particles’ velocities such
that

o0
v =nw). [ awdv=1, (1)
—0o0
Here, the first relation guarantees the absence of heat fluxes, while the second relation is a normalization
condition.
Substitution of expressions (39) and (40) into the definition of temperature (36) yields

o]

o0
T(t,x)= / To(x —vt)yn(v)dv = / To(x + vt) n(v) dv. 42)
—00 —00
The equivalence of these expressions follows from the fact that n(v) is even (see formula (41)).

In the second integral of (42), we change from variable v to g using

o0

q = 2msign(v) n(w)du <= v = ce(q), 43)

v|

where c,(q) is the inverse function with respect to g(v). We note that, by the definition, both functions are odd.
Substitution of formula (43) into (42) yields

1 T
T(t,x)= Z,/ To(x +cg(q)t )dq. (44)

Formula (44) coincides with formula (27), as derived from the solution of the lattice dynamics equations, to the
accuracy of the prefactor!3 1/2. A comparison of these expressions shows that in formula (44) the variable ¢

13 The difference is caused by the fast process, which is only present in the lattice dynamics solution (see Sect. 3). The fast
process leads to a reduction in the temperature by a factor of 2. The solutions coincide exactly if the initial temperature in the
kinetic theory is interpreted as a result of the fast process.
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plays the role of a wave number, while ¢, is the group velocity. Therefore, the quasi-particles move with group
velocities.

For example, for Hooke’s crystal (a chain of identical particles, connected to their nearest neighbors by
identical springs) the distributions of velocities and the group velocity have the form

1 H(c? —v?)
) = — ————
T e —?

. ¢gq) = csigngq cos %’, (45)

where c is the speed of sound in the chain (the long wavelength limit of the phase velocity) and H(x) is the
Heaviside step function (H(x) = 1 for x > 0, and H(x) = 0 for x < 0). Substitution of formulae (45) into
expressions (42) and (44) yields two known formulae [31], which describe ballistic heat transfer in Hooke’s
crystal:

1 (¢ To(x — vt) L[ q
T(t,x) = ; . ﬁ dv = E/(; TO(X + ct cos E)dq (46)

Here, the integration limits have been changed for simplicity.

Thus, the derivation of (44) using the kinetic theory is significantly simpler than the derivation based on
lattice dynamics. However, this apparent simplicity can be misleading. Firstly, the change of variables (43) is
only valid for crystals with one-to-one correspondence between the wave number g and the group velocity cg
(otherwise derivations are more complicated). Secondly, from the lattice dynamics point of view, formula (44)
is an approximation, which is applicable only when conditions (10)—(12) are satisfied. These conditions impose
certain restrictions on the system size, initial temperature profile, etc. Finally, the concept of the kinetic theory,
based on the existence of the quasi-particles (which are not real physical objects), raises many questions. The
main question is how to interpret the quasi-particles in terms of some of the other structures and objects which
are present in the results of lattice dynamics calculations. In previous Sections, it has been shown that wave
packets (22) may play the role of quasi-particles, because the wave packets are localized (to some extent) in
both physical and Fourier spaces. However, due to dispersion, the wave packets have finite lifetimes. Therefore,
the continuum solution (44) is only valid at finite times.

6 Conclusions

We have shown that the transition from the exact expression for the kinetic temperature to the continuum limit
is carried out using assumptions (10)—(12). The key assumption is a slow variation of the initial temperature
profile at the length scale a AN, this scale being large compared to the lattice constant a and small compared
to a macroscopic length scale. Neglecting variation of the initial temperature at distances of the order of a AN,
we have shown that the macroscopic fundamental solution is represented by a spatial average of the discrete
fundamental solution. This averaging yields wave packets, e.g., groups of harmonic waves with close wave
numbers. The wave packets are localized in space and move with group velocities. These facts allow us to
consider the wave packets as the quasi-particles used in the kinetic theory.

Two properties of the quasi-particles were demonstrated. Firstly, the position of the quasi-particle is deter-
mined with uncertainty of the order of a AN, and secondly the characteristic width of the wave packet in the
Fourier space is inversely proportional to A N. Therefore, localizations of the quasi-particles in real and Fourier
spaces are mutually exclusive. This fact is somewhat similar to the uncertainty principle being used in quantum
mechanics. We refer to paper [32] for further discussion of the relationship between classical chain dynamics
and quantum phenomena. Secondly, the dispersion leads to an increase in the width of the wave packet over
time. Therefore, the kinetic description remains valid for a period of time of the order of the quasi-particle
lifetime, which is proportional to AN 2 (see formula (26)).

We believe that the inaccuracy of the kinetic approach will be most pronounced in problems with localized
initial temperature distribution 7p(x). We refer to paper [16] for a detailed comparison of the extreme case,
and notably a comparison of the discrete and continuum fundamental solutions. However, no alternative to
the continuum solution (27) has been presented in the literature. The derivation of approximate formulae,
describing the behavior of temperature at times much larger than the quasi-particle lifetime, would be an
interesting extension of the present work.

We note an important difference between lattice dynamics and kinetic approaches. In lattice dynamics,
the properties of the crystal are determined by the equation of motion. In particular, features of the ballistic

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



V. A. Kuzkin, A. M. Krivtsov

heat transport regime are determined by the dispersion relation and corresponding group velocity [11, 13].
The initial conditions specify the temperature field and fluxes, but there is no way to influence the rate of
heat transfer via the initial conditions. In contrast, the Boltzmann transport equation, governing motion of the
quasi-particles, contains no information about the properties of the crystal (at least in the collisionless case).
Motion of the quasi-particles, e.g., their velocities, is completely determined by the initial condition fy(x, v).
This fact allows us to partially answer the question, raised in paper [23]: “In fact, upon specifying the complete
displacement field, including its velocities, it is not so clear how to extract from it the positions and momenta
of the particle-like objects called phonons.” From our reasoning, it follows that the velocities of the quasi-
particles cannot be extracted from the displacement field, while we suspect that the spatial distribution of the
quasi-particles can be derived from that field. However, the corresponding procedure is yet to be developed.

Additionally, we have shown that the presented approach allows the rigorous separation of two physical
processes, namely the equilibration of kinetic and potential energies, and ballistic heat transport. Similar sepa-
rations have already been carried out in papers [11, 13]. However, in these works, several heuristic assumptions
have been made. In this work, we have managed to eliminate those assumptions.

Finally, we note that it would be interesting to explore the interaction of the quasi-particles (wave packets)
with defects and interfaces. Important steps in this direction have been performed in the recent paper [33],
where the Kapitza interfacial resistances in linear and nonlinear chains were investigated.
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Appendix 1: Change of the summation limits

We show that in formula (8) the summation from O to N — 1 can be replaced by a summation from M — N + 1
to M (for M < N) as follows:

N-—1 T M N-—1
> TJQCOS(W(i —j)(p—s)) =D e >
=0 j=0 j=M+1
M N—-1 o
= Z + Z T y cos(W(i —j+N)p— s))
j=0 j=M+1
M ! 27
=Z---+ | > T}’cos(W(i —j)(p—s))
j=0 j=M—-N+1
l 0 2r . .
= > T)cos ~ =D =) (47)
j=M—-N+1

Here, the periodicity of the problem T]Q = T"  is used. Similarly, we show that the following identity is

j—=N
satisfied:
N—1 o M
Z cos(wpt) cos(wyt) cos(ﬁ(i —j)(p— s)) = Z vy Wp = Wp_N. (48)
s,p=0 s,p=M—N+1
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Appendix 2: Derivation of the formula for ¢

Consider the derivation of formula (19) for function ¢. By definition,

1 AN
TN Z cos(Ak(j —1)). (49)
I=—AN+1

We make the following transformations at the right side of formula (49):

. AN . AN
cos(jAk) sin(j Ak) .
@ = W Z COS(Akl) + W Z Sln(Akl). (50)
I=—AN+1 I=—AN+1
Substitution of the identities
AN AN
Ak . . .
> cos(Akl) = cot —- Sin(ANAK), > sin(Akl) = sin(AN Ak) (51)
I=—AN+1 I=—AN+l

into (50) yields expression (19) for ¢.

Appendix 3: Derivation of the formula for

We derive the approximate expression (24) for i in the limit AN > 1, aAN « L. We make the following
transformations:

] q1+m

14 cos(q2(j + @'t))sinc(ANg2)dg>

2ra Jg-n
L [mAY g+ o)
COS —————

= — sinc god 52
2maAN (q1—m)AN AN e e ( )

1 /+°° @(j+o't) .
N — c0s ———sinc ¢2dgs.
2nalAN J_s AN

Here, g1 € [0; 7], o = @/(q1). Calculation of the integral at the right side of formula (52) yields formula (24):

1 . /
~, da|j+w't|l<alAN,
S { 2aAN lj | (53)

0, alj+w't|> aAN.

Here, a AN is small compared to the macroscopic length scale L. Therefore, for aAN « L, function ¥ can
be replaced by the Dirac delta function.
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