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Stability of 2D triangular lattice under finite biaxial strain is investigated. In this work only diagonal strain tensor is
regarded. The lattice is considered infinite and consisting of particles which interact by pair force central potential.
Dynamic stability criterion is used: frequency of elastic waves is required to be real for any real wave vector. Two
stability regions corresponding to horizontal and vertical orientations of the lattice are obtained. It means that a
structural transition, which is equal to the change of lattice orientation, is possible. The regions’ boundaries are
explained: wave equation coefficients change their signs at the border, as well as Young modulae and shear modulae.
The results are proved by direct numerical simulation.

Keywords: stability, triangular lattice, finite strain, biaxial strain, pair potential, elastic wave, structural transition.

1. Introduction

In this work stability of plane triangular lattice under finite biaxial strain is investigated.
This problem and its possible solutions have been considered earlier in [1]. Then in [2] a
qualitatively new result, that is proved and discussed in detail in this work, was obtained. In
spite of the fact that real objects with such lattice have not been discovered, triangular lattice is
convenient for both constructing the theory and carrying out numerical simulations. Finite strain
may lead to discontinuities, so in this work analysis and modeling based on discrete atomistic
methods [3] is proposed. The medium is represented by a set of particles interacting by a pair
force central potential, in particular Lennard-Jones and Morse. Direct tensor calculus [4] is used.

Let us introduce the following notation to describe the geometry:

ap =T, — o, (1)

where 1, is radius vector of a particle k, r, is radius vector of reference particle. If a lattice is
simple, then any particle can be named “reference”, each particle k£ has a pair —k and a_;, = —a,,.
Triangular lattice is simple and close-packed, which means that it coincides with its Bravais
lattice and possesses maximum concentration of nods in elementary volume V[, with the given
minimum distance between the nods. Let us refer to the geometry which is described by r, and
a,, as reference configuration.

[¢]
Let V and V be Hamilton’s operators in reference and current configurations [4]:

° 0 0
V=¢-— V=¢-—. 2
=1 axz Y =1 aXl ( )
Vectors ¢, form an orthonormal basis. If vector r has projections z; in reference configuration,
then in current configuration r will turn into R with projections X; in the same basis.
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Suppose that the lattice is subject to strain characterized by V R. According to long-wave
approximation [3, 5]

o
A,=R(r—a)—R(r)~ g VR 3)
Long-wave approximation takes into account those wave lengths that are much greater than the
interatomic distance. The thermal motion is neglected.

Morse and Lennard-Jones potentials are used in this work to describe the interaction

between particles

)=o) [ 2]
Here a is equilibrium distance in the system of two particles, D is the depth of potential well,
0 characterizes the width of the well. If § = 6, these potentials coincide in the elastic zone. If
r — 0, then II;; — oo, but Morse potential remains finite. This is very important for numerical
simulations of strong compression. If » — oo, then Morse potential decreases faster, so less
particles may be taken into consideration. That is why Morse potential is preferable in this work.
Let F, = F(Ax) = —II'(Ay) be interaction force and Cy = C(Ax) = I1"(Ax) be the

bond stiffness, both calculated in current configuration. Then we can introduce

ék = A, Ay, 4ék = A A AL A, &y = Gy 4gk = e
Fk 1 1 4 1 4 (5)

2. Stability criterion

Following [1,2], let us write the equation of motion in Piola form [4]

poil = VP, (6)

where py is density in the reference configuration, u = R — r is displacement vector, P is Piola
stress tensor. According to [3]

1
L= zk: PrayAy.- (7)

To investigate the stability of current configuration the first variation of (6) is found [1]
podii = V-6 P. (8)

If initial deformation characterized by %]_% is uniform, the following equation is obtained from
(8) using (5)
mp =*C - - VVu, )
where m = poVy, v =0du, ‘C=EP+'B.
The solution of (9) can be represented in the following form

v =yt Tl (10)

where w is frequency, K is wave vector. Substitution of solution (10) into equation (9) leads to a
system of homogeneous linear equations for amplitude vy. This system has non-trivial solution,
if

det [l_) — QE} =0, (11)

where Q = mw?, D='C--K, K=KK.
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Dynamic stability criterion is: frequency of elastic waves is required to be real for any
real wave vector. Thus, the following has to be fulfilled for any real vector K, so that v will

remain infinitesimal
Q> 0. (12)

3. Deformation of triangular lattice
| A

Fig. 1. Reference and current configurations

Fig. 1 shows the typical part of triangular lattice before and after deformation. In reference
configuration o = 60°.
Let e, and e, be the unit vectors of directions 1 and 2 respectively. In 2D case (11) takes
the form
02 —QtrD +det D = 0. (13)
According to (12) roots of equation (13) are positive for stable current configurations. Thus,
stability criterion is

trD>0, detD>0, 2trD*— (trD)*>0. (14)

Inequality 2 tr l:)Q = (tr 2)2 > 0 is always true in 2D.
Let G = E--'C. The equations (14) yield

trD >0« G11K12 + G22K22 > O,
- (15)
det D >0 < AK| +2BK{Kj + CK; > 0,

where
G = Ch + Cy, Gag = Clg + O,

A= C'1161217 2B = C'116'22 + C’126121 - 40247 C= C’126122-

Here C}; are the components of tensor*C' from (9).

The stability regions for Morse potential with # = 6 are shown in Fig. 2.
Here €, and ¢, are linear parts of Cauchy-Green tensor. Two coordination spheres are considered,
because taking only the first sphere into account is not sufficient in the case of finite strain [2].
Fig. 3 shows the transition from the vertical orientation to the horizontal orientation of the lattice.
Particles from first coordination sphere in vertical lattice are marked by circles, stars correspond
to second sphere. After deformation that is equal to rotation all particles change their position,
and some “stars” occupy the place of “circles” in close vicinity to reference particle. If the
second sphere is neglected, there will be no equilibrium at horizontal lattice [1,2].

Let us draw a series of stress-strain diagrams, e.g. Fig. 4. According to [3] Cauchy stress
tensor has the form

(16)

1
g= W?Akﬂk, (17)
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Fig. 3. Coordination spheres

where V' = v/3/2(1 +&1)(1 +&5). Grey zones in Fig. 4 correspond to stability regions. In Fig. 4
we can see, that the loss of stability is strongly connected with the sign of do/de.

Let us evaluate the signs of Young modulae and shear modulae (the plural is due to
anisotropy of the deformed lattice).

In Fig. 5 we can see, that dynamic and “static” stability (positivity of local elastic modu-
lae) coincide in the case of diagonal stress tensor.

The number and the shape of stability regions strongly depend on the potential (see
Fig. 6). For example, intermediate small stability area vanishes with the decrease of § (increase
of width of potential well).

4. MD simulation

In order to verify the obtained results, numerical simulation is carried out. The simulation
method is based on molecular dynamics (MD) technique and it is described in [3,6]. A set of
current configurations with periodic boundary conditions to model an infinite lattice is exposed
to additional minor strains caused by small chaotic velocities, given to each particle. At each
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Fig. 4. Uniaxial loading (o5 = 0)
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Fig. 5. Young modulae and shear modulae
step the following system is integrated numerically

mrk—ZF T, — 1, 77:”, k=1=+N, (18)
| Tk rn|

where N is the total number of particles in the simulation. The total kinetic energy of the system
is calculated. If a sudden growth of kinetic energy is observed, the configuration is considered
unstable. An example of unstable configuration evolution is presented in Fig. 7. Black ovals
mark “crack” initiation zones.

In Fig. 8 the results for diagonal strain tensor are presented. We can see a good agreement
between two approaches. Discrepancies at high compression and at the borders are caused by
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Fig. 7. Configuration ; = 0.506, e, = —0.108 after 10° and 3-10° integration steps
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Fig. 8. Results of numerical simulation
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computational errors, perhaps by insufficient number of steps and also by the difference between
the number of configurations regarded (10° in theoretical analysis and 10* in numerical simulation
due to big time consumption of the latter).

5. Concluding remarks

Stability of 2D triangular lattice under finite biaxial strain was investigated. Two stability
regions, which correspond to vertical and horizontal orientations of the lattice, were obtained
both analytically and using MD simulation. It was shown that taking more than one coordination
sphere into account leads to a new effect: possibility of structural transition, which is equal to the
change of lattice orientation. It was noticed that dynamic and static stability coincide in the case
of diagonal strain tensor. It was also shown that stability loss during hydrostatic compression
is connected with shear modulus, which coincides with results of [7] obtained for 3D case. To
sum up, the analytical approach was proved to be consistent and thus it can be applied to more
complex cases, e.g. arbitrary strain of triangular lattice and FCC lattice.
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