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Abstract—In this paper, we derive expressions for equivalent Cauchy and Piola stress tensors that can be applied
to discrete solids and are exact for the case of homogeneous deformation. The main principles used for this deriva-
tion are material frame formulation, long wave approximation and decomposition of particle motion into con-
tinuum and thermal parts. Equivalent Cauchy and Piola stress tensors for discrete solids are expressed in terms of
averaged interparticle distances and forces. No assumptions about interparticle forces are used in the derivation,
thereby ensuring our expressions are valid irrespective of the choice of interatomic potential used to model the dis-
crete solid. The derived expressions are used for calculation of the local Cauchy stress in several test problems. The
results are compared with prediction of the classical continuum definition (force per unit area) as well as existing
discrete formulations (Hardy, Lucy, and Heinz—Paul-Binder stress tensors). It is shown that in the case of homoge-
neous deformations and finite temperatures the proposed expression leads to the same values of stresses as classical
continuum definition. Hardy and Lucy stress tensors give the same result only if the stress is averaged over a suf-
ficiently large volume. Thus, given the lack of sensitivity to averaging volume size, the derived expressions can be

used as benchmarks for calculation of stresses in discrete solids.
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1. INTRODUCTION

Many phenomena in materials science and engineer-
ing at different length scales can be considered from
both discrete [1-3] and continuum [4, 5] points of view.
In particular, joint application of discrete and continuum
techniques is important for investigation of novel nano-
materials [6, 7], such as graphene [8, 9]. However, given
the differences between discrete and continuum descrip-
tions of matter, comparison and coupling [10] of the
results obtained using these two approaches is difficult.
The comparison requires the estimation of equivalent
continuum fields, such as the stress tensor, for discrete
systems. Several approaches for calculation of conti-
nuum fields from discrete systems have been proposed
in the literature. One of the first expressions for a stress
tensor derived for a system of particles was derived by
Clausius [11]. In equilibrium, this virial stress is equiva-
lent to an average Cauchy stress in some finite domain

13

containing particles. Calculation of highly localized
pointwise stresses is a more challenging problem. Statis-
tical physics, and a particular averaging kernel—the Di-
rac delta, was employed by Irving and Kirkwood [12]
to calculate stresses that are consistent with the macro-
scopic balance laws. Though the obtained expression
for the stress tensor has great importance from theo-
retical point of view, it does not result in a continuous
field. Additional modifications are required in order to
calculate local stresses using Irving—Kirkwood ap-
proach. In particular, Irving—Kirkwood expression has
been adjusted for calculation of local stresses and used
in molecular dynamics simulations in the paper [13].
Other approaches for estimating a local continuum
field include the method [14], which uses Fourier trans-
formations, and the one by Hardy [15—19], which uses
kernels with finite support suitable for computer simula-
tions. With regard to Hardy’s approach, the dependence
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of stress on the form of localization functions and the ra-
dius of localization volume has been investigated in the
paper [18], and the generalization of Hardy’s approach
for calculation of stress in the material formulation has
been carried out in [19]. A simpler formalism proposed
by Lucy [20] has been used by Hoover [21] for calcula-
tion of stresses in shock waves. This approach avoids in-
tegration of the kernel along the bond and is therefore
computationally more efficient.

The Lucy and Hardy formalisms are based on the
spatial frame formulation, i.e. continuum properties are
computed at the points fixed in space. These and other
spatial frame formulations are commonly used in
fluid dynamics. In solid mechanics theories, such as ther-
moelasticity, plasticity, and fracture mechanics, the mate-
rial frame formulation is more widespread. In the ma-
terial frame formulation, stresses are calculated at mate-
rial points. This approach is more efficient for dealing
with problems featuring complexities such as free sur-
faces, interfaces, cracks, and inclusions. Accurate for-
mulation of equivalent continuum parameters for dis-
crete systems in the material frame is important, for
example, for development of hybrid discrete-continuum
methods for solution of solid mechanics problems [19,
22].

The choice between spatial and material frame for-
mulations strongly influences the expressions for equi-
valent continuum properties of discrete systems. This
difference has been first emphasized by Hoover [2]. It
has been shown that the virial theorem for solids has two
different formulations. In the material frame formula-
tion, the virial stress has no kinetic part while the poten-
tial part depends on interparticle forces and distances
that are averaged separately. In the spatial frame formu-
lation, the expression for the virial stress contains both
kinetic and potential parts.

In the present paper, we generalize the expression for
stress tensor in the material frame formulation obtained
by Hoover [2]. The long wave approximation [23-27] is
used for transition from discrete description to equiva-
lent continuum. It is shown that the expression derived
by Hoover [2], with minor modifications, can be used for
calculation of local stresses in static and dynamic prob-
lems. In the case of homogeneous deformations and fi-
nite temperatures, this expression leads to exactly the
same values of stresses as classical definition used in
continuum mechanics (force per unit area). In addition,
comparison with commonly used equivalent stress ten-
sors is carried out for several examples with uniform and
nonuniform stress fields. The advantages of the derived
expression for the stress tensor are demonstrated.

2. HYPOTHESES

Let us consider a discrete system consisting of par-
ticles arranged in an infinite ideal crystal lattice. Herein,
only crystals with simple structure are investigated (i.e.
crystals that are invariant to translation on any vector
connecting lattice nodes).

We use two main principles for transition from dis-
crete system to an equivalent continuum: (i) a decompo-
sition of particle motions into slow continuum and fast
thermal modes [25—27] and, (ii) the long wave approxi-
mation [23, 24]. First let us focus on the particle mo-
tion decomposition, as this approach has been intensely
examined by many researchers in recent years. In the
literature, it is effected using different types of averaging
such as spatial averaging, time averaging, averaging over
phase space or over frequency spectrum, etc. In [28] it
was noted that unique decomposition is impossible be-
cause rules for a choice of averaging parameters like
averaging time, representative volume, etc. do not ex-
ist. The only restriction for these parameters is that they
should depend on time and spatial scales of the prob-
lem being solved, and some work to quantify these scales
has been done in [29].

Let us denote average (/') and oscillating (thermal)
7 components of physical quantity fas:

F=D+ T FES =, (1)
Different expressions for the averaging operator (-) are
proposed in the literature.
For the case of a one-dimensional chain of N par-
ticles, the following operator was defined for the velo-
city v [25]:

(V)

1 T2 nep2

=— | X w@dr. 2)
TA (-T2 k=n—A/2

Here (v), denotes the averaged value of physical quan-

tity v over a spatial region centered at #» and comprised of

the A particles surrounding # (inclusive of #), and over a

temporal domain of size 7 that surrounds the current

time ¢.

As an alternative approach, the direct and inverse
Fourier transformations were used for decomposition
(1) in [28]. The Fourier transformation of v is given by:

\/ 1 T iVt
V) =(V)(V)+ V(V) N jw veVldt,  (3)

where
V(V),V<V i = 0,v <V
(V)(v) = V()= )
0,v=v ,, V(V),v=v .
Here v, is the cut-off frequency, which is on the order

of THz [23] and depends on the material. The quantities
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(v)and v are obtained through the inverse Fourier trans-
formation:

Ny, V= My, (5)

1 +oo 1 Foo -
v)=—— | Ve — | Ve
v N2m _{o \2m _{o
The approaches developed by Hardy [16—19] and
Lucy [20, 21] employ the kernel density estimation; in
particular, the velocity is given by
2V w(x—ry)
(M(x, )=+~ :
2 mw(x—r;)
k
Here v, , my,r, are the velocity, mass and position of
particle k; x is the coordinate of the spatial point, where
the velocity is calculated; and w is the localization/ker-
nel function that determines the weights in this weighted
average. Applying decomposition (1), the thermal com-
ponent of the velocity for particle n is

{zn (Xv t) =V, (t) - <V>(X’ t) (7)
and is associated with both the particle # itself and the
spatial point x. This type of decomposition (as well as all
those discussed) is not unique. It strongly depends on the
choice of localization function. In particular, if localiza-
tion volume surrounds a single atom, then the thermal
component of the velocity is equal to zero.

Since a unique averaging operator does not exist, a
formulation for estimating continuum fields should not
be dependent on the specific choice of the operator, nor
should the results depend qualitatively on this choice. In
the following derivations, properties of the particular
averaging methods are not used unless otherwise stated.

Another principle used in the present paper (indepen-
dent of the decomposition) for transition from a discrete
system to an equivalent continuum is the long wave ap-
proximation [23, 24]. The approximation assumes that if
an average component of any physical quantity is slowly
changing in space over distances of order of the interato-
mic spacing, then the average component can be consi-
dered as a continuum function of a space variable and
can be expanded into power series with respect to the in-
teratomic distance. Moreover, the resulting series should
converge rapidly. Development and use of this approach
is examined in further detail in the next section.

(6)

3. THE APPROACH BASED ON THE LONG
WAVE APPROXIMATION

3.1. Kinematics

We consider two states of a discrete solid and its equi-
valent continuum: the reference configuration and the
current configuration. It is assumed that the mapping
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between these configurations exists. This assumption is
usual for solid mechanics theories based on the material
frame formulation. For the sake of simplicity let us take
the undeformed configuration of the crystal lattice as the
reference. Using a local numbering convention, similar
to one established in papers [26, 27], we focus on a refe-
rence particle 0 and mark all of its neighbors by the index
o.. The vector that connects 0 with o in the reference con-
figuration is a,,. By the definition, vectors a,, have
the following property

A)(_qy = ~Agg (8)

Note that no thermal motion is associated with the refe-

rence configuration, i.e. 4, = 0. Ina current configura-

tion vector connecting particle 0 to its neighbor o is de-
noted A, :

def

AO(x =A, - A0 = <A0(x> + AO(xﬂ )
where A, A, are radius-vectors of particles 0 and a.
The use of lower-case letters to denote reference con-
figuration and upper-case letters to denote current confi-
guration was done in [26, 27], and we maintain this nota-
tional style here for consistency.

Let us consider kinematics of the discrete system in
the long wave approximation. It is assumed that average
values of particle positions are identical to positions of
corresponding points of continuum media. Positions for
points of equivalent continuum in the reference and cur-
rent configurations are denoted as r and R respectively.
Thus, the position of particle 0 is represented by the vec-
tor r, in the reference configuration of the equivalent
continuum, and is represented by the vector R(r,)=
(A,)) inthe current configuration. Note that R(r,) isa
mapping that implicitly depends on time as well as the
reference position r,. Here, we have dropped this depen-
dence on time for brevity. The average position of par-
ticle 0’s neighbor ot is determined by vector R(x, +a,,).
Then vectors A, and a,, connecting the particles are
related by the following formula

<A0(x> = <A(x> _<AO>

=R(r, +a,,)-R(ry) ~a,, -VR(,),  (10)

where V& d/0r is the spatial gradient operator in the
reference configuration [5].

This expression is the Taylor series expansion of the
equivalent continuum position for particle o relative to
the position for particle 0, truncated to first order. One
can see that expression (10) is similar to the formula
used in continuum mechanics that connects material
vectors dr and dR. In the literature formula (10) is usu-
ally called Cauchy—Born rule (see, e.g., [30]). If particle
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positions are known, then formula (10) can be used for
calculation of deformation gradient VR(r,) for equiva-
lent continuum:

-1
%R(ro):(zaO(an(xj 'ZaO(x<AO(x>' (11)

Note that in the long wave approximation the function
R(r) is assumed to be slowly changing on the distance of
order of | a,, |. Therefore defining the function R(r) at
particle positions is sufficient for calculation of gradi-
ents.

Using Eq. (10) one can derive relations between vec-
tors (A,,)» 2, and measures of deformation used in
nonlinear theory of elasticity [5]. For example, the fol-
lowing identity is satisfied for Cauchy—Green measure
GY(VR)-(VR)T:

(Ao =204 G -2y, (12)
Thus, the long wave approximation allows us to connect
deformations of the discrete system and the equivalent
continuum.

3.2. Equivalent Stress Tensor

Consider dynamics of infinite perfect crystal of
simple structure. Let us assume that the total force F,
acting on the reference particle 0 is represented in the
form:

FO :ZFO(X({AO(X}(XEA)‘ (13)

Here F,, is the force acting on the reference particle due
to its neighbor o, {A,,} . is the set ofall vectors A,
from particle O to its neighbor o lying within the set A. It
is assumed that the decomposition (13) is carried out in
such a way that the forces K, satisfy Newton’s third
law with respect to the neighbor o.. The example of de-
composition (13) in the case of three-body forces is con-
sidered in Sect. 4.2.

Note that decomposition (13) used in the present pa-
per, as well as many other papers dealing with calcula-
tion of stresses [ 15, 19] for systems with multibody inter-
actions is not the only possibility. Alternative ways of de-
composing atomic forces and constructing a correspond-
ing expression for the stress tensor are derived in [31].
The application of this approach is demonstrated in next
section using simple example with three-body forces.

Now let us derive the equation of motion for the equi-
valent continuum using the equation of motion for the re-
ference particle and the decomposition of motions:

m(vy) = <§FO(X({AO(X}%A)),

Coe (14)
m¥y =3 Foy ({Age aen)

where m is the mass of particle 0. The first equation in
(14) describes slow motion of the system that corre-
sponds to average value of particles velocity (v,). The
motion (v,) can be considered as the motion of a con-
tinuum media. The second equation describes the ther-
mal oscillation characterized by thermal component of
displacement ¥,,. One can see that both (F,,) and F,,
depend on the total particle-neighbor distances, A, =
(Ape) + A and thus couple two equations in (14).

We assume that average interparticle forces can be
approximated by continuum functions f(r), i.e.

£, (1) = (Foo.)» 14 (rp) =(Fy_oy))- (15)

Evidently this assumption is satisfied exactly in the case
of homogeneous deformations, since in this case f,, are
constant. The functions f,(r) satisfy Newton’s third
law:

f(x (rO) = _f—(x (rO + aO(x)’ f—(x (rO) = _f(x (rO - aOoc)' (16)
By their physical meaning, the functions f(r,) are si-
milar to traction vectors at material point r, in direc-
tions a,,. Using the introduced functions f,(r), one

obtains
<F0(x + FO(—(x)> = f(x (rO) + f—(x (rO)

:f(x(ro)_f(x(ro _aO(x) =g 'Vf(x(ro)

= V- (agfy (1p))- (17)
Given that the functions f, are slowly changing be-
tween atoms and, hence, higher order terms in the expan-
sion can be neglected via the long wave approximation.
Let us carry out the following transformations in the
equation of motion of particle O:

. 1
mVo =Y Ko =X Fyqy = 5 2 (Fog, + Fo_g))- (18)
o o o

Substituting formula (17) into averaged equation (18)
and dividing both parts by the elementary cell volume in
the reference configuration V, one obtains

m Lo 1
Z<VO> =V: Tm%ao‘xf“(ro) .

Letus compare formula (19) with the equation of motion
for continuum in Piola’s form [5]:

p,v=V-P, (20)
where P is the Piola stress tensor, p, = m/V, is a density
in the reference configuration. Comparing equations

(19) and (20) one can deduce that Piola stress tensor at
the point r,, has the form

1
P(rO) = 2_V* %aO(x<FO(x >:

where the identity (15) was used. Strictly speaking, the
formula (21) determines the stress tensor to within a

(19)

@2y
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field of zero divergence. This tensor field corresponds to
some equilibrium stress in the crystal. Note that the only
assumption made during the derivation is represented by
formula (17). In the case of homogenous deformation of
the crystal formula (17) is satisfied exactly. Thus in this
case the expression (21) for Piola stress tensor is also
exact. Note that the expression for Piola stress tensor is
used, in particular, for investigation of stability of crys-
tals [32]. In this case it is more convenient for analytical
derivations than the Cauchy stress tensor.
Let us carry our the same derivations in a current con-
figuration using the following transformations:
f_o(Ry)=—f, (Ry +{Ag_a)))
=—f, (Ry)+(A,,) VI, (R,), (22)
where V& d/dR is a gradient operator in the current
configuration. In formula (22) it was used that in the long
wave approximation <AO(—(x)> =~—(A,)- Inthe case of
homogenous deformation of the crystal (22) is exact.
Using formula (22) one can rewrite (17) in the current
configuration:
(Foo +Fo_gy) =T (Rp) +1_, (R)
=(Ay,) VI, (Ry). (23)
Substituting expression (23) into equation (18) and di-

viding both parts by the volume of elementary cell in the
current configuration J one obtains

1
§<vo>' =5 2lAw) VI, (Ry)

2V %

The argument R, of functions f, is omitted in the right
side of the given equation for brevity. The second term in
the right side is equal to zero, since

! _ Ly (V@R ] a -
V'(ﬁ@‘o&j—znv (V(VR) j a5, =0, (25)

[ —
=0

where Eq. (10) and Piola’s identity were used (see, for
example, [5]). Then the equation of motion (24) has the
following form

%(Voy =V'{LZ<Ao(x>f(x(Ro)j' (26)

=v{izmmm)—;v{%mmjm. (24)

2V a

The requirement of equivalence of discrete and con-
tinuum systems leads to expressions for the Cauchy
stress tensor

1
™Ry) =-—2 (Ag XFyq) (27)
2V a
and density p =m/V in the current configuration. The
expressions (21), (27) for the Piola and Cauchy stress
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tensors satisfy the following well-known relation
t=V,(VR)" -P/V (see, for example, [5]).

Note that the expression for the stress tensor (27)
does not explicitly depend on particle velocities. Also,
unlike usual expression for virial stress tensor, in formu-
la (27) the forces and vectors connecting particles are
averaged separately. However for solids it does not lead
to any contradictions. In [2] it is shown that for solids
there are two equivalent formulations of virial theorem.
According to the theorem the stress tensor can be repre-
sented either using (A F,,) and kinetic part or using
(Ayg) (Foo)- In the latter case there is no kinetic part.
The expression for volume-averaged stress calculated
using formula (27) coincides with the expression from
[2]. The derivation in [2] is based on the assumption
(A, =0, valid only in the case of statics. The deriva-
tion given in the present paper shows that expres-
sion (27) has much wider range of applicability. It satis-
fies the law of momentum balance (26) for equivalent
continuum and therefore can be used for calculation of
local stresses in both static and dynamic problems.

In the next paragraph, we will demonstrate that in the
case of homogenous deformations and finite tempera-
ture, formula (27) becomes exact (see Figs. 1, 2). Note
that the only assumption about the interparticle forces
used in the present paragraph is given by formula (13).

4. COMPARISON OF DIFFERENT EXPRESSIONS
FOR CAUCHY STRESS TENSOR

Let us compare the expression for stress tensor (27)
with analogous expressions used in the literature. In the
following examples the operator (-) in formula (27) cor-
responds to time averaging. The expression for the
Cauchy stress tensor at spatial point x and time ¢ using
the Hardy formalism [16] is

1 -~
Ty(x, 1) = 5 Y YAE B (x)-YmVv,wm(x-A,)),(28)
i i
1
B,(x)=[w(A; -1A, —x)dA,
0

where A; =A; - A,, A, is the position of particle / and
v, is the thermal velocity as defined in Eq. (7).

Another approach developed by Lucy [20] is used in
[21]. The following expression for Cauchy stress tensor
at spatial point x and time ¢ is proposed:

T, (%, 1) = z[% S A E, -, ]w(x ~A), (29)
i J

where thermal velocities V; are calculated using formu-
las (6), (7). The given approach avoids integration over
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bond length. In the present work, the localization func-

tion proposed by Lucy [20] is used with both expressions
(28) and (29):

3
5 r r
— | 143— | 1-— |, r<R,,
wr) = nRCZ[ RJ[ RCJ SR €0

0,»>R,,

where R, is arange of localization function. This func-
tion has two smooth derivatives everywhere and there-
fore is appropriate for calculation of continuum fields.
Note that in contrast to formula (27), expressions (28)
and (29) explicitly depend on particle velocities.

Using molecular dynamics simulations, let us exam-
ine the consistency of the expressions just described
with continuum mechanics. In all the examples consi-
dered below (except Section 4.2) particles interact via
the spline potential [33]. Corresponding interatomic
force F;; acting on particle i due to particle, has the form

8 14
12¢ a a
F.=—%%4)||— | -|—| |A;, (3D
ij 2 ij ij>
a 4y 4y
l,OSAiij,
4-2 Y|
k(Ay)Z 1— ﬁ ’b<Aij <acut,
cut
0, 4; 2 Gy

where b=(13/7)", ais an equilibrium distance, g, 1s
a bond energy. The force (31) coincides with Lennard-
Jones force for 4; <b and smoothly goes to zero as 4;
goesto a -

4.1. Example 1: Cold Pressure in a Crystal

First, consider a two-dimensional triangular lattice
system compressed volumetrically by 9.75% (bonds are
compressed by 5%). Let us calculate the pressure at
points where the particles are located using formulas
(27)—(29). In the given calculations the cut-off radius is
equal to 1.5a. The pressure corresponding to formula
(27) is calculated analytically:

p_oML((a) (a)  _5-d
A A | 2

ps Vd
where A =0.95a, d=2 is a dimensionality, M= 6 is a co-
ordination number, p, =€, / a* is usual Lennard-Jones
scaling. The resulting value is p/p, = 11.29033. Mole-
cular dynamics simulations are carried out in order to
calculate pressure using formulas (28), (29), and classi-

4% (32)
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Fig. 1. Relative error in pressure calculated using Lucy and
Hardy definitions for cold, two-dimensional crystal as a func-
tion of localization radius R,. Here p,/p = 11.29033isa
pressure calculated using classical continuum mechanics de-
finition (force per unit length). Triangles corresponds to pres-
sure calculated using formula (27).

cal continuum definition. In the latter case, the average
normal component of the force acting on one layer of
particles per unit length is calculated. The resulting va-
lue coincides with prediction of formula (32). Pressures
calculated using the Hardy (28) and Lucy (29) stress ten-

sors converge to the same value with increasing range of
the localization function R,. Trapezoidal rule with

50 points per bond length is used for calculation of inte-

grals in Hardy’s expression (28). The dependence of re-

lative error in pressure on R, is shown in Fig. 1. Note

that for R, >1.9a the difference between the Lucy and
Hardy stresses is less than one percent and is decreasing
with R..

One can see from Fig. 1 that in contrast to formula
(27), formulas (28) and (29) overestimate the pressure, at
least for R, < 2a. Atthe same time, formula (27) gives
the exact value of pressure.

4.2. Example 2: Shear of a Square Lattice
with Three-Body Forces at Finite Temperature

Let us demonstrate the possibility of using formula
(27) for calculation of stresses in systems with multi-
body interactions. Consider the simplest problem with
three-body interactions, notably pure shear of perfect
square lattice at finite temperature. In this problem the
different definitions of stress can be compared analyti-
cally. Let particles interact via angular springs connect-
ing two neighboring bonds. The average length of all
bonds are equal to 4. Only nearest neighbors are taken
into account. Average positions of the particle number 0
and its neighbors are shown in Fig. 3.
PHYSICAL MESOMECHANICS Vol. 18
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Fig. 2. Relative error in local thermal pressure calculated us-
ing formulae (27)—(29) as a function of localization radius
R.. Here p is the pressure calculated using classical con-
tinuum mechanics definition (force per unit length).

Assume that potential energy of the spring connect-
ing bonds A, and A, is given by the following ex-
pressions

Utz = Uiz (Ao1> App> Aip)s Ay =Agy =Agp- (33)
In order to calculate stresses using classical definition
(force per unit area) let us introduce interparticle forces
F; using the following definition [15, 19, 34]
— aUtot e e. = ﬁ
/8 8147 i Ty A1 >
ij ij

where U, is the total potential energy of the lattice.

Forces F;; defined by formula (34) are central and satis-

fy the relations F, = > F;, F;, = —F ;, where F; is the to-
tal force acting on pa{’ticle i. Using formula (33) and de-
finition (34) one can calculate the forces ¥y, F,, F; )

oU, Uy
FlO:_z[ 012 4 (=2) e

(34)

0dyy 04y 35)

aUYOIZ
e, F _, =222012
aAlz 12 1(=2) aA](—Z) I(

The remaining forces in the system are calculated using
symmetry of the problem and the third Newton’s law.

Flz=2

O O —O
4 r2 73
/ / N I
/ / ' /
/ / n /
/’ I/ \’ /
1O O5—
B / / 0 ! / 1
/ / / /
/ / ! /
Il I/ 1 II
/ /’I 4 /
/ i !/ /
-3 7 /- J—
30 O) 2 /’ O 4
A 7

Fig. 3. Shear of the square lattice. Averaged positions of the
particle number 0 and its nearest neighbors.
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Let us calculate the stress vector t acting on crystal
cross-section with normal n orthogonal to vector e,
(see Fig. 3). According to classical continuum mecha-
nics definition, the stress vector in two dimensions is
equal to the force acting on the cross-section per unit
length. Then t; has the following form

1
ty= Z(FIO +Fp, +F ) (36)

where 4 is the nearest-neighbor distance. Now let us use
formula (27). Using symmetry of the problem one can
rewrite formula (27) as follows:

T= %((Am) (Fop) +(Agp) (Fpp)

+(Ag3) (Fo3) +(Agy) (Fog))s (37)

where the identity (A,;) (F;) =(Aq_;)) (Fo_py)» i= 1,
2, 3, 4isused. Substituting the relations (A ;) =(A,, +
Ap), (M) =(Ag —Ag), (Fyy) = _<F1(—2)>= (Foy) =
(F,,) into formula (37), one obtains the expression for
the stress tensor:

1
T= —;<A01><F10 +F, +F )

1
—;<A20><on +F +E ). (38)

Then the stress vector acting on the cross-section with
normal n orthogonal to vector e, (see Fig. 3) is calcu-
lated using the Cauchy formula t=n - T. As aresult

n-{(A
t=n-T= —%(Flo +F,+F ) =ty (39)

Here the expression V' =—A4n-(A,) for the volume of
the elementary cell was used. From formula (39) it fol-
lows that the stress vector calculated using formula (27)
exactly coincides with classical continuum defini-
tion (36).

Alternative approach for calculation of the stress vec-
tor in systems with multibody interactions is suggested
in [31]. It is stated that every angular spring causes three
forces with zero sum. For example, for the spring con-
necting particles 0, 1 and 2:

aUmz_
0A,

1

Here i=0, 1, 2. The forces F,-Olz, i=0, 1,2 contribute to
the potential part of the stress vector only if the corre-
sponding angular spring is dissected by the cross section.
The sign of contribution depends on position of the par-
ticle i with respect to the cross section. Then the poten-
tial part of the stress vector is equal to sum of contri-
butions from all crossed angular springs. In the present
example it has the form:

F812+F1012+Fé)12 -0, Fi012 def _ (40)
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1012, woi(=2 012
tllZﬁéB:Z<Fl +F1( - 0

—F - -E), (41)

Here it is used that angular springs connecting particles

0,1,2and0, 1,2 cause the same average forces as an-

gular springs connecting particles 0, 1,—4 and 0, 1, 3.
The forces in formula (41) are as follows:

Fglz _ Uy, ey, + WUy, egrs
oy " oy,
F2 - Uy, ey + Uy, e,
a4y, " oy,
FO2 - Uy» eg - Uy, e,
Ly U5 C1opT
R = 3 ey + 3 reg ),
Ay Ay(-2)
FOI2) Uy Uy
1 == €o1 1(=2)>
94, 04,
U, U,
Fi)zl(—Z) __%Yoi2 Corn — 01(-2) .
aAO(—Z) (=2) aAl(—Z) (=2)

Substituting (42) into formula (41) and using formulas
(35) for the forces K, F,, F;_,, one obtains:

1
thks = Z<F10 +F, + F)) =t (43)

Thus the potential part of the stress vector calculated
using the Heinz—Paul-Binder formalism exactly coin-
cides with the classical definition (36). In [31] it is sug-
gested that the stress vector should additionally have
kinetic part. The present example shows that at least
for solids the kinetic part should not be added.

The expression for the stress tensor (27) gives the
exact value of the stress vector. Therefore it can be used
for calculation of stresses in systems with multibody in-
teractions.

4.3. Example 3: Thermal Pressure in a Crystal

Consider calculation of local Cauchy stress in two-
dimensional crystal at a finite temperature. Assume that
initial configuration of the lattice is undeformed. Perio-
dic boundary conditions in both directions are used. Ini-
tial velocities of particles are chosen so that the sample
has the following temperature: k37 /e, =0.05, where
kg 1is the Boltzmann constant. Temperature is calculated
as the mean kinetic energy of thermal motion [2]. Conse-
quently, the pressure is due to thermal expansion only.
The pressure is calculated using formulas (27)—(29).

Lucy and Hardy expressions (28) and (29) are additio-
nally time averaged over 2x10* T, where T is the pe-
riod corresponding to the Einstein frequency. In the case
of formula (27), time averaging is carried out using ope-
rator (-). In all three cases standard error of the mean is
approximately 0.2%. As in the previous example, the
Lucy and Hardy stresses are calculated for 1< R /a <3.
The results are compared with classical continuum me-
chanics definition of stress (force per unit length), which
is used as a benchmark. The deviations from the bench-
mark are shown in Fig. 2. One can see from Fig. 2 that
the error of the Lucy and Hardy stresses is decreasing
with increasing R_. The error for R, >3a is less than
1%. Additionally let us note that the Lucy and Hardy
stresses are indistinguishable for R, > 2.la. Atthe same
time, the pressure obtained using definition (27) coin-
cides with the classical continuum definition within the
standard error. Thus at homogeneous deformations and
finite temperature, Eq. (27) can be used as a benchmark.

4.4. Example 4: Stresses Around a Pair
of Dislocations

Let us consider the case of an inhomogeneous stress
distribution and compare the results with the prediction
of linear elasticity theory. Consider the stress field gene-
rated by a pair of edge dislocations as modeled by a two-
dimensional crystal lattice with pair interactions. An
analogous problem in three dimensions is considered in
[17]. It is well-known that triangular lattice is isotropic
in the case of small deformations. Thus, one can com-
pare the stress field induced in the triangular lattice with
analogous stress field in two-dimensional isotropic li-
near elastic continuum. First, let us derive expressions
for stresses using well-known results for three-dimensio-
nal continuum under plane strain conditions [35].

Consider an infinite three-dimensional continuum
under the plane strain conditions containing single dislo-
cation. Assume that x axis is directed along the Burgers
vector and dislocation line coincides with z axis. Then
the normal stresses have the form [35]:

T = bG,  y3x*+1%)

T on(-v,) (P47
i (44)

bG* y(x —J/’)

TW 27.5(1_\}*) (x2+y2)2 ?
where G,, v, are the shear modulus and Poisson’s ratio
of the continuum, 4 is the modulus of the Burgers vector.
Stresses in a two dimensional continuum with a disloca-
tion can be obtained replacing G, with the shear modulus
of a two dimensional continuum G and v, by v/(v +1),
PHYSICAL MESOMECHANICS Vol. 18
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Fig. 4. Formation of the pair of dislocations. Only atoms near the dislocations are shown.

where v is the Poisson’s ratio for a two dimensional con-
tinuum. For a triangular lattice with spline interactions,

v=1/3, G=183p,. (45)

Let us exploit the principle of superposition to deter-
mine the complete stress field for a system of two dislo-
cations with equal and opposite Burgers vectors sepa-
rated in space. This field is

T;x(xa J/) = Txx(xa ) b)+ Txx(x_ Xo> Y= o>~ b):

T, (6, 1) =7, (x, 3, D)+ T, (x= Xy, y= ¥ = b), (46)
where the first dislocation is at the coordinate system
origin and the second dislocation has coordinates
{x0> Yol

Now let us compare analytical stresses (46) with re-
sults of molecular dynamics simulations. In the given
example the cut-off radius is equal to 1.75a. The disloca-
tions are created using the following procedure. Rectan-
gular sample containing 40 000 particles is considered;
24 particles are removed as it is shown in Fig. 4 (see
[36]).

Interatomic distances in the initial configuration are
set to be equal 0.9954 in order to collapse the set of va-

) . (@
A a\aQ
DD
2 =}
SR Yo
&9 — Linear
o, elasticity
-2 ° ° a This work
’ o Hardy stress
—4 Ge o Lucy stress
-10 =5 0 5 10
yla

cancies shown in Fig. 4. Additionally the crystal is com-
pressed by 0.25% in x direction in order to favor forma-
tion of dislocations with Burgers vectors in the same di-
rection. Periodic boundary conditions are used during
the formation of dislocation. Finally boundaries are re-
leased and crystal is equilibrated at zero temperature.
The process of formation of the dislocations is shown in
Fig. 4. Coordinates of the second dislocation are x,=
12a, y, = 12+/3a. The absolute values of the Burgers
vector for both dislocations is equal to a. The distribu-
tion of stresses along axis y at x =0 (see Fig. 4) is calcu-
lated using formulae (27)—(29). Localization radius R, =
2.1aisused in formulae (28), (29). The given value cor-
responds to minimum error in pressure in the case of ho-
mogeneous deformations (see Fig. 1). In the case of for-
mula (27) stresses are calculated at atomic positions.
Stresses in between atoms are obtained using linear in-
terpolation. For the sake of simplicity it is assumed that
V =V, =34 / 2. The resulting distributions of stresses
Tyes Tyy along y axis are shown in Fig. 5.

One can see from the figure that in contrast to the
continuum solution, the results of molecular dynamics

) (b)
A
2 e
Aa
Qr:: Q
n-? 0 A: — Linear
$ elasticity
£ o
-2 A‘l‘ﬂ’o 4 This work
o Hardy stress
—4 o Lucy stress
-10 -5 0 5 10

yia

Fig. 5. The dependence of 7,, (a) and T, (b) onyatx=0. The lack of symmetry is caused by the presence of the second dislocation.
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simulation do not contain singularity at y =0. Obviously
the singularity is a mathematical consequence of the as-
sumptions of linear elasticity. The stresses calculated
using formula (27) proposed in the present paper are
closer to the prediction of elasticity theory (44), (46).
Formulae (28) and (29) give analogous results only for
|| > 5a. The average difference between the Lucy and
Hardy stresses is less than 1%. Better agreement be-
tween formula (27) and continuum theory is caused by
the fact that, in contrast to the Hardy and Lucy formulas,
formula (27) does not contain spatial averaging.

Finally, let us note that comparison of stress distribu-
tions obtained using formulas (27)—(29) for |y | < 5ais
not so straightforward. On the one hand, the difference
between stresses at some points in this interval is rela-
tively high. On the other hand, given the limitations of
linear elasticity, we would need to appeal to a more com-
plex model of the continuum (e.g. [37]) to determine
which formulation is more accurate. Such an analysis
was performed for the Hardy stress in [17] in three di-
mensions.

5. RESULTS AND DISCUSSIONS

An approach for the calculation of equivalent conti-
nuum parameters for discrete solids in the material
frame formulation was presented. Two main principles
were used for the transformation: the decomposition of
particle motions into continuum and thermal parts, and
the long wave approximation [23, 24]. The relation be-
tween kinematics of discrete system and kinematics of
equivalent continuum was established. Equivalent
Cauchy—Green measure of deformation for discrete sys-
tem was introduced. The transition from a single particle
equation of motion to equation of motion for equivalent
continuum was carried out using the long wave approxi-
mation. No assumptions about interparticle forces were
used. Expressions connecting the Cauchy and Piola
stress tensors with averaged interparticle forces and dis-
tances were derived for the case of multibody interac-
tions. In the case of pair interactions the volume-aver-
aged expression for the stress tensor exactly coincides
with expression derived by Hoover [2].

Four test problems with homogeneous and nonhomo-
geneous stress fields and finite thermal motion were con-
sidered. In the case of pair interactions the expression for
Cauchy stress tensor (27) was compared with the Hardy
[16] and Lucy [20, 21] expression. Additionally, it was
shown that in all considered examples the difference be-

tween the Hardy and Lucy stresses is of order of 1%, no-
ting that the Lucy expressions is more efficient from the
computational point of view. The calculation of stresses
in systems with multibody interactions was demon-
strated using simple example, notably pure shear of
square lattice at finite thermal motion. The stress vector
was calculated analytically using formula (27) and
Heinz—Paul-Binder approach [31]. The stress vector cal-
culated using formula (27) coincide with classical con-
tinuum definition and the potential part of the Heinz—
Paul-Binder stress vector.

It was shown that in the case of homogenous defor-
mations and finite temperatures the stresses calculated
by definition (27) exactly coincide with classical conti-
nuum stresses (force per unit length). The Hardy (28)
and Lucy (29) expressions give the same result only if
the averaging over a sufficiently large volume is used. In
the case of non-homogeneous deformations the stress
calculated using formula (27) is closer to prediction of
elasticity theory. Better agreement is caused by the fact
that, in contract to the Hardy and Lucy expressions, for-
mula (27) does not contain spatial averaging.

The authors are deeply grateful to Prof. William Gra-
ham Hoover for the fruitful discussions of the present pa-
per. This work was financially supported by Sandia Na-
tional Laboratories and RSCF (grant No. 14-11-00599).
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