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Synonyms
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chanics of discrete media: thermoelasticity; Ther-
moelasticity: from particle dynamics to contin-
uum mechanics

Definitions

An approach for transition from discrete to con-
tinuum description of thermomechanical behav-
ior of solids is discussed. The transition is carried
out for several perfect anharmonic crystals with
pair force interactions: one-dimensional crystal,
quasi-one-dimensional crystal (a chain possess-
ing longitudinal and transverse motions), two-
and three-dimensional crystals with simple lat-
tice. Macroscopic balance equations are derived
from equations of motion for particles using con-
tinualization. Macroscopic parameters, such as
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stress, heat flux, deformation, thermal energy,
etc., are represented via parameters of the discrete
system. An approach for derivation of equations
of state relating thermal pressure, thermal energy,
and specific volume is presented. Derivation of
constitutive equations for heat transfer is dis-
cussed in harmonic approximation. Unsteady bal-
listic heat transfer in a harmonic one-dimensional
crystal is considered. The heat transfer equation
for this discrete system is rigorously derived.

Introduction

The general laws used to construct equations of
continuum mechanics leave too much freedom
for choosing the constitutive equations (Zhilin
et al. 2013). Therefore, discrete mechanical mod-
els can add a lot for understanding of the gen-
eral nature of thermomechanical processes in
solids (Hoover and Hoover 2013; Lepri 2016;
Krivtsov 2007b; Weinberger and Tucker 2016).
Lattice models of solids are good examples of
discrete systems where rigorous analytical solu-
tions can be constructed. Recent advances in nan-
otechnologies have brought these lattice models
much closer to reality, showing that solids with
perfect lattices can be indeed realized at least
at nanoscale. In the nearest future, this could be
done for much higher scale levels providing high-
quality materials with extraordinary thermome-
chanical properties.

Passage from discrete to continuum mechanics
requires a number of important steps. Below,
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we outline some of them, which in many cases
allow to rigorously obtain macroscopic equations
of continuum mechanics from microscopic equa-
tions of discrete mechanics.

Averaging. The important feature of discrete
mechanics is the existence of the chaotic
thermal motion of particles forming the
material. In continuum mechanics, it is
taken into account implicitly via constitutive
relations. Therefore some averaging procedure
should be used in order to bridge the gap
between discrete and continuum descriptions.
Averaging can be carried out over space, time,
or over a set of random realizations of the
considered mechanical system. The latter
averaging is preferable for both analytical
derivations and computer simulations. In
rigorous derivations, this average can be
replaced by mathematical expectation.

Power expansion. In general, averaging cannot
give closed equations for anharmonic crystals.
However, in the case of small nonlinearity,
series expansion yields closed system of ther-
momechanical equations.

Similarity approximation. Additional relations
between different terms in the power
expansion can be obtained using the similarity
approximation. The approximation states that
averages of higher powers are represented
in terms of the lower ones (see, e.g.,
formula (20)).

Correlational analysis. Obtaining closed equa-
tions for heat transfer processes requires av-
eraging the quantities defined for all pairs of
particles. The quantities characterize correla-
tion of motion characteristics (e.g., velocities)
at different spatial points. This approach yields
an exact analytical description of the heat
transfer in harmonic crystals.

Motion separation. In discrete systems contain-
ing large number of particles, there are sev-
eral processes with different time scales. Lo-
cal transitional processes are realized at the
time scales of the individual particles oscilla-
tions. These processes result in thermodynam-
ically equilibrium states such as local energy
equipartition. The nonlocal processes such as
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propagation of mechanical waves and heat
transfer are much slower. Therefore, signif-
icant simplification can be achieved if these
processes are separated.

Continualization. The macroscopic quantities
are supposed to be varying slowly in space at
distances of order of particles separation. Then
series expansion replacing finite differences
with spatial derivatives can be used.

Summarizing the above, stochastic finite differ-
ence equations at microscale are to be replaced
by deterministic partial differential equations at
macroscale.

The transition from discrete to continuum
equations is carried out below for several
simple anharmonic systems: one-dimensional
crystal, quasi-one-dimensional crystal (a chain
possessing longitudinal and transversal motions),
two- and three-dimensional crystals with simple
lattice. The anharmonicity is essential to observe
coupled thermomechanical phenomena such as
thermal expansion, etc. For all these systems,
thermomechanical equations are derived in
the adiabatic approximation (heat transfer is
neglected). Rational description of the heat
transfer processes is much more complicated.
The complexity is caused by anomalous nature
of the heat transfer in perfect crystalline solids.
Such processes are considered in the last part,
where the heat transfer in the one-dimensional
crystal is considered in harmonic approximation
and equations of unsteady heat processes are
rigorously derived.

Basic Designations and Assumptions

The discrete system is a set of particles inter-
acting via prescribed interparticle forces of a
potential nature. The particles are arranged in a
perfect crystal lattice, and they perform perma-
nent random oscillations (thermal motion) in the
vicinity of the lattice nodes. The nodes participate
in much more smooth mechanical motion that can
be continualized.

A set of different realizations of the same
system is considered. The realizations differ only
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by the random component of the motion. Let ¢(s)
be the realization number s of physical property ¢
for the particle number k. Then the mathematical
expectation ak for the random value ¢,£s) is de-
fined as

o (o) = ) M

In numerical simulations, the mathematical ex-
pectation is replaced by an average over a suffi-
ciently large number of realizations S. Alterna-
tively, the averages over space and time can be
used. However, definition (1) is preferable, since
it contains no additional parameters such as aver-

def

b = ¢(x),

Fri1 Zp(x +a) = p(x) + ad/(x) + 0(a?),

aging period or averaging volume. Additionally,
in the case of computer simulations, formula (1)
requires less computations.

Any physical quantity can be represented as a
sum of the regular component (1) and a stochastic
component:

¢(S) def ¢(S) 5
(2)

¢(S) or + ¢(S) where
Index ) is omitted below for brevity.

The mathematical expectation is supposed to
be slowly varying in space. Therefore, continual-
ization with respect to spatial coordinate can be
used. In the one-dimensional case, the continual-

ization is carried out as follows:

(€)

where x is the continuous spatial variable equal
to ka at the lattice nodes and O(g) is a quantity
of the same order as ¢.

To describe temperature of the crystal at mi-
crolevel, the kinetic temperature can be used,
which is defined as

d def mﬁz
—kgT = K7, Kr =(—), 4
> ks T T <2> 4)

where kp is the Boltzmann constant, d = 1,2,3
is the space dimension, K7 is the expected value
of thermal kinetic energy of the particle, and m
and v are the mass and the stochastic velocity of
the particle. The space dimensionality, d, in for-
mula (4) is introduced in order to guarantee that at
equilibrium kinetic energy per degree of freedom
is equal to kBTT (the equipartition theorem, see,
e.g., Hoover 1991).

def

miig = Fy1 — Fy,

Fre=—fla+e),

Formula (4) allows to calculate temperature
for any particle at any given moment in time. This
definition of temperature can be proved by con-
sidering an ideal gas as a thermometer (Hoover
et al. 1993). Such thermometer being connected
to the crystal after equilibration shows exactly the
same temperature, as the kinetic temperature of
the crystal (4).

One-Dimensional Crystal

General Equations

Consider one-dimensional crystal with nearest-
neighbor interactions via potential I7(r), where r
is the interparticle distance. The dynamics equa-
tions for the longitudinal motions are

&)

def
€ = Uy — Uj—1-

Here m is the particle mass; uy is the displace-

ment of the particle number k; Fy is the force

acting on particle k — 1 from particle k; f(r) &f

—IT'(r); € is the bond deformation; and a is the
lattice step.

Exact transformations of Eqgs. (5) yields the
following energy balance equation (Krivtsov
2007b):

(g.ak :%_%4—1’ (6)



where & is the specific energy and 7 is the
energy flux, defined as

def
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26k = mvi 4+ (a + €g1) + M(a + ), 256, d;f—Fk(vk + ve—1), (7
where vy &t uy is the particle velocity.
Calculating mathematical expectation (1) and 00 def 4 Ja, vt an 9)

performing continualization (3) of microscopic
balance equations (5) and (6) yield macroscopic
balance equations
mpod = p'. poU =—pv' =1, (8)
where terms O(a?) are neglected, prime stands
for derivative with respect to spatial variable x,

def def M

pE (10 +2a0). .

= —(%’,%) n (H(V +?k)> ,

are the number of particles in a volume (the
reverse specific volume) for the reference config-
uration and the actual specific volume, u = uy
and v = Uy are the macroscopic displacement
and velocity,

= <'F,{17k_1> (10)

are the pressure, the specific internal energy (per
particle), and the heat flux. Note that in the
one-dimensional case, volume V has the same
dimension as length.

To close system (8), the constitutive equations
for p, U, and h are required. Application of
the virial theorem, which is a particular case of
the mentioned above motion separation, gives
the following representation for the internal en-
ergy (Krivtsov 2007b):

U= <f(V +’Ek)?k>+<n(v +?k)>. an

1

2

It is convenient to represent the pressure and
internal energy as sum of the cold and thermal
terms:

p = po+pr, U=Uy+Ur, (12

where
Uo £ Ulg=o=11(V)
13)
are the cold pressure and energy (corresponding
to the absence of the thermal motion) and p7 and
Ur are the thermal pressure and energy. Using
these quantities, Egs. (8) can be represented in the
form

def
Po = p|€k=0:f(V)’

poUr = —prv' —h'.

(14)
Here Ur is the specific thermal energy per parti-
cle; mpg = m/a is the mass density.

mpov = py + pr .

The First Thermal Approximation
According to formulas (10), (11), (12), and (13),
the thermal pressure and the thermal energy de-
pend on a single microscopic parameter — the
stochastic part of deformation €. Assuming this
parameter to be small, the power expansion can
be used for derivation of constitutive equations.
The first nontrivial approximation for
Egs. (10) and (11) in terms of the small parameter
'€y yields

pr =~ f2(V)§, Ur ~ fiV)§,  (15)
where
def [~ def (_l)p d?
E:<612c>’ fp(V):Tmf(V)-
(16)

Parameter & can be referred to as the defor-
mation temperature. Elimination of this quantity
from (15) yields the Mie-Griineisen equation of
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state (Mie 1903; Griineisen 1912). The equation
gives linear relation between thermal pressure
and thermal energy:

f(V)

fiv)’
a7

where I"(V') is dimensionless Griineisen param-
eter.

Substitution of expressions (9), (12), (13),
and (17) into the microscopic balance equa-
tions (14) yields two equations for three
macroscopic variables: displacement u, thermal
energy Ur, and heat flux h. If the heat flux
could be expressed in the terms of u and Ur
(similarly to the pressure and internal energy)
then the closed system of macroscopic equations
would be obtained. However, in general this is
impossible. The simplest way to close the system
is to apply the adiabatic approximation, which is
h = 0. This approximation is good for relatively
fast processes, such as shock waves.

For the adiabatic approximation, the fol-
lowing nonlinear wave equation can be
obtained (Krivtsov 2007b):

pr=r)L T =V

ii—c*u =0,
AE— (fi+GhA-Ur),
(18)

1
mp?

where f, = f,(V) and thermal energy Ur
satisfies relation

Ur =By filV),

Constant B can be determined from the initial
conditions. In the case of small deformations,
Eq.(18) is a linear wave equation where the
sound speed ¢ depends on the thermal energy.

V=a+ai. (19

The Second Thermal Approximation
The Mie-Griineisen equation of state (17) is not
valid when f; is close to zero, while f5 is

pr(Vi—¢ Ur) =

2f2(V1) U3

v 2(0Nh) r

nonzero. This case corresponds to strong ten-
sion of the crystal up to the breakage point.
Then it is essential to leave higher order terms
in series expansion of the thermal energy and
thermal pressure with respect to €. To close
the resulting system of equations, the similarity
assumption (Krivtsov 2003) is used:
2

<?‘,;> =2 <?§> — 282, (20)

where A is an empirical constant. At small tem-

peratures A & 3 (Krivtsov 2007b). Then consti-
tutive equations (15) take the form

prx HUNE. Ur ~ A0E+ ASIIE.

21
Elimination of £ yields the following extension of
the Mie-Griineisen equation of state (17):

VIRV + 3001 U= (V)
3Af3(V) '

pr=2/(V)

(22)
In the vicinity of the critical tension (relevant to
the bond break), the term f; (V) is close to zero,
and Eq. (18) takes the form

rr =2f2(V) \/ % (23)

Thus in this case, the thermal pressure is propor-
tional to the square root of the thermal energy that
is substantially different from the Mie-Griineisen
equation of state, which predicts a linear depen-
dence.

The wave equation (18) shows that the sound
speed in the hot crystal vanishes in the point of
the “hot break,” which is located shortly before
the point of the “cold break” V' =V}, where
J1(V1) = 0. The equation of state in the vicinity
of the point of the “hot break,” V = V; — ¢,
is represented in the following form (Krivtsov

2007b):
é_déf 5/ Ur
8f2(V1)

(24)



This asymptotics has power 2/3 rather than 1/2
that holds in representation (23). The reason for
this difference is that the location of the “hot
break” depends on the thermal energy itself. Note
that power 2/3 inherent to the “hot break” is
between 1 (the Mie-Griineisen equation of state)
and 1/2 (“cold break™).

More accurate equations of state can be ob-
tained leaving higher order terms in the expan-
sion (21). For example, adding the fourth order
term to the expansion of pr yields an appropriate
description of weak anharmonic effects for any
tension (not only in the vicinity of the break
point). Further expansions leaving higher powers
of & require the following generalization of the
similarity assumption (20):
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@) =2 @) =07 05
where A , are empirical constants. In principle, an
infinite expansion describing arbitrary nonlinear-
ity can be carried out. However, numerical simu-
lations show that formulas (25) are less accurate
for higher p (parameters A, depend on thermal
energy and deformation of the chain).

Kinetic Temperature

Definition of kinetic temperature (4) for one-
dimensional case (d = 1) together with Egs. (10)
and (11) yields

1 _ ~
U:E@T+@uv+q» @T:—Vw+qu. (26)
These formulas allow rewriting the above equa- fala) def
tions of state in terms of temperature instead of T = fila)e — @) kgT . T = f(a)—p,
the thermal energy. In particular, the first thermal (29)
approximation (21) yields where 7 is the small stress and € = ' is the

= f2(V)
fiV)

where kg T = f1(V)E. In this case, as it follows
from the virial theorem, kinetic and potential
parts of the thermal energy are equal, the heat
capacity (for the constant volume) is constant and
equal to the Boltzmann constant kg. Then the
equation of state reads

kgT , Ur = kgT,

27

f(V)
fV)

kpT.

p=fV)+ (28)

For the case of small deformations |u'| <« 1,
substitution V' = a + au’ to Eq. (28) yields

Ur = A(VE -+ AB0E.

small strain. Equation (29) is a one-dimensional
version of the Duhamel-Neumann law of linear
thermoelasticity. From Eq.(29) the thermal ex-
pansion coefficient is calculated as

def € — S2(a) (30)

Tl=o "% f2a)

If nonlinear temperature effects are taken into
account, the kinetic and potential parts of the
thermal energy are not equal, and the thermal
energy is no longer proportional to temperature.
An explicit representation of the thermal energy
in terms of the temperature is obtained using
series expansions in Egs. (26). The second ap-
proximation yields

kT ~ fi(V)E + Afs(V)E2, (31)

Then internal energy and temperature are related

as
_ABY)

kgT)?,
a2 D

Ur = kgT (32)

where terms of the third and higher orders are
omitted. Note that the second coefficient in for-
mula (32) depends on the fourth derivative of the
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interatomic potential. This fact can be used for
calibration of parameters of the potential using
experimental data on the temperature dependence
of heat capacity.

Formula (32) is not valid in the vicinity of the
break point, where f7 tends to zero. In this case,
from (31) it follows that

3
Ur 7 kpT. (33)
Note that coefficients of linear terms in formu-
las (32) and (33) are different (1 vs. 3/4).
In order to get nonlinear corrections to for-
mula (33), additional terms in expansions (31) are

required.

Quasi-One-Dimensional Crystal

General Equations

In the present section, longitudinal and trans-
verse vibrations of an infinite chain with nearest-
neighbor interactions are considered (Kuzkin and
Krivtsov 2015). Each particle has two degrees
of freedom. The chain is preliminary stretched.
Continualization of this system can be carried out

U =

0|

(vz> + (n (1A +?|)>, Us

as described in the previous section. The present
section focuses on derivation of equations of state
closing the balance equations in the adiabatic
approximation.

The steady state of the system is considered.
In this case, mathematical expectations of charac-
teristics associated with all particles are identical.
Vector connecting two neighboring particles is
represented as a sum of its mathematical expecta-

tion A and the stochastic part€ such that <?> =0.

Particles interact via pair potential I7.

Consider derivation of equations of state relat-
ing pressure, thermal energy, and deformation of
the chain. Pressure is defined as

=)

'(4)

i)
(34

F=—& (|A+€]?) (A +7€), (4%)=—

where A = |A], e is the unit vector directed along
the chain, and F is the force acting between two
neighboring particles. The pressure is represented
as a sum of cold and thermal parts (12):

p=po+pr. Po=plzo=® (4*). pr=p — po.
(35)
The specific energy has the form

Utt_y = T (A), Ur =U —U,. (36)

The kinetic part of specific energy is represented
as a function of vector € using the virial transfor-
mation (Krivtsov 2003):

m

L
: E<E-F(A+?)>. (37)
Formulas (34), (36), and (37) show that the ther-
mal pressure pr and thermal energy Ur depend

on vector’e.

The First Thermal Approximation
In order to derive equations of state, consider
series expansion of the thermal pressure and

thermal energy with respect to €. The first ap-
proximation yields

pr & (@' AE + 2ee) + 20" Aee) - (€€),

1 ! 42
Up ~ —(§¢E+ o' A ee) <M€e>
(38)

where E is the unity tensor, argument A2 of
functions @™ is omitted for brevity, and double
dot product of tensors ab and cd is defined
as ab - -cd (a - d)(b - ¢). Then thermal
energy and thermal pressure are proportional to

tensor <?E> The tensor characterizes longitudinal



and transverse deformations of the bonds caused
by thermal motion:
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€="¢e+€m, (’E’Z) = <E'12>ee + <’Zt2> nn + <?1?t> (en + ne) . (39)
From formulas (38) and (39) it follows that ther- n
I~ " (&) ~ — (&2). (40)
mal pressure and thermal energy depend on {€7 ), I A\

<'E?> Therefore, system (38) is not closed, and ad-
ditional relation between these parameters is re-
quired. The relation is derived using the equipar-
tition theorem (Hoover 1991). The theorem states
that kinetic energy is equally distributed between
degrees of freedom. In particular, kinetic ener-
gies corresponding to longitudinal and transverse
motions of the quasi-one-dimensional chain are
equal. Using this fact, the following relation is
derived (Kuzkin and Krivtsov 2015):

I'(A)
pr = ——

I +1rI;
Up, I'=-t""7t
A T 2

Covariance of longitudinal and transverse defor-
mations <’E}'€}> does not contribute to the equation
of state.

Excluding ’E?> and <’E?> forms the expressions
for pressure and thermal energy, and using for-
mula (40) yields the equation of state in the Mie-
Griineisen form:

H///A
1= t =

H//A _ H/
20 o

41
27 (41)

Griineisen parameter I” has two contributions [
and I from longitudinal and transverse vibra-
tions, respectively. The contribution of longitudi-
nal vibrations I is caused by anharmonicity of
the interatomic potential only. It vanishes in the
case of harmonic potential (IT"” = 0). In con-
trast, the contribution of transverse vibrations [}
does not depend on anharmonic properties of the
potential. It is caused by geometrical nonlinearity.

The Second Thermal Approximation

The Mie-Griineisen equation of state (41) is in-
applicable, for example, in the case of small
deformations of the chain (Kuzkin and Krivtsov
2015). More accurate equations of state are de-
rived as follows. Thermal pressure and thermal

B, (B2B3 — B1B4)(B3 — / B3 + 4B4Ur)
Ur +

energy are expanded into series with respect to
parameter € up to the terms of the fourth order.
It is assumed that transverse deformations of the
bonds are larger than longitudinal (€2 >> ?? .In
order to close the resulting system of equations,
the following similarity assumptions are used:

(@) =2

The second formula in (42) is written assuming
that €; has the same order as 'E? Parameters A
and p are estimated using computer simulations.
For example, in the case of the Lennard-Jones
potential A &~ 3, u ~ —1. Then equation of state
similar to Eq. (22) is obtained

@)= @) . w

PT=B—4

) 43
257 (43)
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where

I
Bl=¢’A+7’q>, By =-2,
Bi=—2(A+21)9/,

2 +24“ DA
(44)
Analysis of equation of state (43) shows that
the dependence of thermal pressure on thermal
energy is strongly nonlinear. For example,
consider series expansions of pr(Ur) for the
cases of stretched chain (A > a), unstretched
chain (A = a), and deformation corresponding
to zero Griineisen parameter (I"(Ax) = 0). Then

— /’L_Fl(x"i_:u)@/
A

B>

Dpp g A TBays
A~ — - Uz, a,
TN oT 4024

21U

~N— =a,
pT 700+ 2)
B,
pPr A EU%, A= A*
(45)

Formulas (45) and results of molecular dynamics
simulations (Kuzkin and Krivtsov 2015) show
that in the case of small deformations the
Mie-Griineisen equation of state is inaccurate.
Moreover in the case of unstretched chain or
deformation corresponding to zero Griineisen
parameter, the Mie-Griineisen equation is
inapplicable. In these cases, nonlinear equation
of state (43) should be used.

Thus the approach described above allows to
derive nonlinear equations of state. The equations
are applicable in wider range of deformations
and thermal energies than the Mie-Griineisen
equation.

Two- and Three-Dimensional Crystals

General Equations

In the present section, continuum balance
equations and equations of state are derived
from lattice dynamics equations for two-
and three-dimensional crystals with simple

structure (Krivtsov 2007b; Krivtsov and Kuzkin
2011; Kuzkin and Krivtsov 2011; Kuzkin et al.

2015).
Consider an infinite crystal lattice with simple
structure in d-dimensional space (d = 1,2 or

3). Two states of a crystal and its equivalent
continuum are considered: the reference con-
figuration (undeformed crystal) and the current
configuration. Thermoelastic deformations of the
crystal are investigated. In this case, the mapping
between the reference and current configurations
exists. Radius vectors of equivalent continuum
in the reference and current configurations are
denoted as r and R, respectively.

Relations between continuum deformation
measures and deformations of bonds in a crystal
are derived as follows. Consider a reference
particle. Neighbors of the reference particle are
marked by index «. Vector connecting the particle
with its neighbor number « in the reference
configuration is denoted as a,. By the definition,
vectors a, have the following property

a, = —a_4. (46)
In the current configuration, vector connecting
the reference particle and its neighbor « is rep-
resented as a sum of its mathematical expecta-
tion A, and the remaining oscillatory part ‘€,
such that <?a
ematical expectations of particle positions are
identical to positions of corresponding points of
continuum. Then continualization of vector A,
yields

= 0. It is assumed that math-

Ae = R(r 4+ a,) — R(ay) ~ a,- VR, @7

where % is the nabla operator in the reference
configuration. In the literature, formula (47) is
referred to as the Cauchy-Born rule.

The expression for the strain gradient follows
from formula (47):

-1
VR= (Zaaaa) Y agAa. @)
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Thus formulas (47) and (48) relate deformations
of the bonds in a crystal with deformations of the
equivalent continuum.

Consider derivation of continuum balance
equations from discrete equations of motion of
the crystal. Equation of motion for the reference
particle reads
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mu = ZFQ,
o

where F, is the force acting on the reference
particle from its neighbor o and m is particle’s
mass. Mathematical expectation of both parts of
Eq. (49) is calculated. Continualization is carried
out using the third Newton’s law:

(49)

Fo(r) = —F_o(r + ag), <Fa> (r) ~ — <F_a> (r) — ag- V <F_a> (r). (50)
Then equation of motion (49) in continuum limit
takes the form
m .. o 1 5— d d
70<u> _v-<m§:aa<m>), Vo= ~—a’, (51)

where a is an equilibrium distance and Vj is the
volume of the elementary cell in the reference
configuration (volume per particle in an infinite
perfect lattice Krivtsov 2007b).

Equation (51) has the same form as contin-
uum momentum balance equation in the refer-
ence configuration. Comparison of these equa-
tions yields the expression for the Piola stress
tensor P:

P= i a aa<Fa>. (52)

Similar derivations in the current configuration
yields the expressions for the Cauchy stress ten-
sor: 1
) A, <Fa> (53)
where V is the volume per particle in the current
configuration. Formulas (52) and (53) represent
Cauchy and Piola stress tensors via interatomic
forces and distances. Note that this approach
allows to calculate the stress field to the accuracy
of tensor with zero divergency.
Consider the equation of energy balance for
the reference particle (Kuzkin and Krivtsov
2011). Body forces and volumetrical heat sources

are neglected. Derivations are carried out in
the reference configuration. Specific energy per
particle has the following form

1

U= %(ﬂ +3 Z(n(ma +?a|)). (54)

o

Calculating time derivative and performing con-
tinualization yields

V%ZP" (¢ <V>)T e (ﬁ Y f. .;>) |
(55)

Comparison of Eq. (55) with continuum equation
of energy balance yields the expression for the
heat flux in the reference configuration:

1 -
hz—m;aa<Fa'V>.

Equivalent expressions for the heat flux are the
following:

(56)
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h=-——
4 &

aa<Fa-(€'+f’a)>=— :

m Ay <Fa : f’a> . (57

Expressions (56) and (57) coincide in the contin-
uum limit. Note that according to formulae (55),

the heat flux is calculated to the accuracy of

vector field with zero divergency.

1

H= - Ao (Fu- 5+ Vo)) = —5

4v
o

Expressions for the heat flux in the current
configuration are obtained using the identity H =

Vo (% R)T-h/V:

(58)

Thus continuum balance equations are derived
from particle dynamics equations. The expres-
sions for equivalent stress tensors and heat fluxes
are given by formulas (53) and (58). In the fol-
lowing section, the expression for the Cauchy
stress tensor is used for derivation of equations
of state.

Derivations presented above are based on the
assumption that the total force acting on a particle
is represented as a sum of forces Fy. In the case
of pair interactions, this assumption is satisfied
identically. The case of multibody interactions is
discussed in paper Kuzkin (2010). It is shown that

T=To+TT, TO:T|'E'a=o:_2_

similar decomposition of the total force can be
carried out in the case of an arbitrary multibody
potential. Therefore formulas (53) and (58) are
valid in the case of multibody interactions.

The First Thermal Approximation
In order to close balance equations described
in the previous section, additional constitutive
relations are required. Consider the equation of
state for the stress tensor.

The stress tensor is represented as a sum of
cold and thermal parts:

1
72 PUDAA. Tr =110 (59)
o

where function @ is defined by formula (34).
Cold stresses are represented as a function

1
2Vo+/det

Tog = —

of deformation measure using formulas (47)
and (53) (see paper Krivtsov 1999):

T
C(v R)" )" ®d(asay - C)agas- V R, C=VR- (v R) , (60)
o

where C is the Cauchy-Green deformation mea-
sure.

Equation of state for the thermal stresses is
derived as follows. Consider the specific thermal
energy:

1
Ur=U —Up. Up=Ufz,co=75) (A,
o

(61)

where U is defined by formula (54). According to
formula (54), the thermal energy has kinetic and
potential parts. The kinetic part is represented as a
function of ‘€, using the virial theorem (Krivtsov
and Kuzkin 2011):

%<vz> ~ %Z(ﬂ “Fo (Ag +?a)>. (62)
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Then thermal stresses and thermal energy depend
on parameters € characterizing thermal motion.

Discrete and Continuum Thermomechanics

In the first approximation, series expansion of
7 and Ur with respect to €, yields

T o
A Y [20'AcEAG + D' AGAGE + 20" AgAuAdAq] - <eaea),
o

(63)

1 ~ ~
ty = F o aoan) )

Equations (63) show that thermal energy and
thermal pressure depend on symmetric second
rank tensors <?a?a>. In order to obtain the equa-
tion of state, additional relations between compo-
nents of these tensors are required.

In paper Krivtsov and Kuzkin (2011), the
following assumption is used

G G .©

fa)=er =) ©
In this case, thermal pressure and thermal energy
are functions of a single scalar parameter £2
characterizing thermal motion. Excluding this
parameter from formulas (63) yields the equation
of state

D ((d +2)@" + 20" A2) ApAq

:—U’
TT VT

(65)
D (do+20'4Y)

o

where tensor G is related to conventional
Griineisen parameter as I' = —%trG. In the
case of interactions of the nearest-neighbors, the
expression for the Griineisen parameter reads

A+ (d — 1) ["A— T
2d(I1"A + (d — DIT')

r= (66)

A particular case of formula (66) for the face-
centered cubic lattice (d = 3) is derived in
paper Irvine and Stacey (1975). Note that accord-
ing to formula (66), the Griineisen parameter can
be negative. This case corresponds to negative
thermal expansion (Kuzkin 2014; Dove and Fang
2016).

In one-dimensional case, assumption (64) is
satisfied, and therefore formula (66) is exact.
In multidimensional case, computer simulations
show that assumption (64) is not accurate — ten-

Sors <?a?a> are not isotropic. Then additional

relations are needed to close the system of equa-
tions (63).

In two-dimensional case, Egs. (63) contain ad-
ditional unknown parameters

. \@m?) .

((Za : eOl)2> ’

characterizing the relation between the longitudi-
nal and in-plane transverse deformations of the
bonds caused by the thermal motion. Here e, =
ay/|aq|; ny is normal to ey in the lattice plane.
For triangular lattice with nearest-neighbor in-
teractions, B, is independent on «. Therefore
index o is omitted below. Then the Griineisen
parameter is represented in terms of 8 as fol-
lows (Panchenko et al. 2017):

H///AZ + /3 [HI/A _ H/]

r= ,
4(I"A + pIT)

(63)

Parameter 8 can be estimated using harmonic
crystal model. In paper Kuzkin and Krivtsov
(2017a), an equation for the covariance of the
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particle displacements is derived. Numerical so-
lution of this equation yields the value of pa-
rameter § = 1.43. This value is in a good
agreement with results of molecular dynamics
simulations (Panchenko et al. 2017).

In three-dimensional case, for each bond there
are two unknown parameters characterizing the
relation between longitudinal deformation and
transverse deformations in two different direc-
tions. Molecular dynamics investigation of this
problem is carried out in paper Barton and Stacey
(1985). Parameters similar to 8, are calculated
for the face-centered cubic lattice with Lennard-
Jones interactions.

Thus series expansion of the stress tensor and
the thermal energy allows to derive equations
of state. In the first approximation, the equation
of state in generalized (tensor) Mie-Griineisen
form is obtained. Leaving more terms in the
series yields more accurate equations of state
similar to the Egs. (43) (see paper Krivtsov and
Kuzkin 2011). Note that for two- and three-
dimensional crystals, nonlinear corrections to the
Mie-Griineisen equation of state are less im-
portant than for one-dimensional or quasi-one-
dimensional crystals.

. def o
iy = Leup = o; (Ug—1 — 2u + Ugy1),

Heat Transfer in One-Dimensional
Crystal

Nonlocal Temperature
As it is shown above, it is possible to rigorously
derive macroscopic continuum equations for the
anharmonic crystals in the case of adiabatic ap-
proximation, where the heat fluxes are neglected.
Attempts to obtain by the similar way the consti-
tutive equation for the heat flux failed. In contin-
uum mechanics, the Fourier law is widely used.
The law assumes linear dependence between the
heat flux and temperature gradient. However, this
law is not fulfilled for harmonic and weakly
anharmonic crystals (Rieder et al. 1967; Lepri
et al. 2003; Kannan et al. 2012; Harris et al.
2008; Gendelman and Savin 2010; Dudnikova
and Spohn 2003). As it is shown below, gen-
erally an infinite number of additional variables
(generalized energies or nonlocal temperatures)
should be added to obtain the closed equations for
the heat transfer (Krivtsov 2014, 2015a,b; Kuzkin
and Krivtsov 2017b).

Consider one-dimensional crystal (5) in har-
monic approximation

We df VC/m,

(69)

where % is the linear difference operator applied
to index k, coefficient w, is the elementary fre-

quency, and C & (a) is the bond stiffness.
The thermal energy and the kinetic temper-
ature are not sufficient for description of the
heat transfer. To close the system of equations,
the generalized nonlocal temperatures are intro-

duced:

kp0py & m <ﬁp5q>. (70)
The nonlocal temperature satisfies the following
differential-difference equation (Krivtsov 2007a)
bbq —2(Lp + L4)0pq + (Lp — L)*0pq = 0.
(71)
This equation describes two processes: fast tran-
sition to the local thermal equilibrium (Krivtsov
2014) and slow heat transfer (Krivtsov 2015a,b).

If only the slow motion is considered, then
the first term with the forth derivative in Eq. (71)
can be neglected resulting in the equation of the
second order with respect to time. For continual-
ization new variables are introduced:

def

0 (1) 2 o yHPra,

(=1)*0pq. k=g —p, :

(72)
where x is the macroscopic spacial coordinate.
Then the nonlocal temperature 6y (x) satisfies
equation (Krivtsov 2015a,b):

O + 2 (Ok1 — 20k + Ok1)” = 0. (73)
where ¢ & wea is the sound velocity in the crys-
tal. Equation (73) can be interpreted as an infinite
system of coupled wave equations. Given known
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the solution of Eq. (73), the kinetic temperature is
calculated as T'(x) = Ok (x)|x=o-

Heat Impact
The initial problem of the heat impact for Eq. (1)
is

ugli=0 =0, Ulr=0 = 0(x)ok,  (74)
where pr are independent random values with
zero expectation and unit variance and o (x) is
variance of the initial velocities, which is a slowly
varying function of the spatial coordinate x =
ka. This kind of initial conditions can be induced
by an ultrashort laser pulse (Inogamov et al.
2012; Indeytsev et al. 2009).

1 (' To(x —cts)
T(t,x)=— ————~ds
TJa J1—s2

1 2w
ds = —/ To(x + ctcos £)dp.
21 0

Discrete and Continuum Thermomechanics

The corresponding initial conditions for the
nonlocal temperature are

O ()i=o = To(x)6k . Ok(x)|r=0 = 0.
(75)
where To(x) = mo?(x)/(2kg) is the initial

temperature distribution, d; = 1 for k = 0 and
8 =0 for k # 0. These initial conditions
correspond to the end of the fast transition pro-
cess (Krivtsov 2014), resulting in double decrease
of the initial kinetic temperature due to equilibra-
tion between the kinetic and potential parts of the
thermal energy (according to the virial theorem).

Solution of the initial problem (73) and (75)
yields the following expression for the kinetic
temperature (Krivtsov 2015a,b):

(76)

It can be shown that ccos% is the functional

dependence of the group velocity of Eq. (1) on
the wave number p. Then the second solution
in (76) can be interpreted as superposition of
waves traveling with group velocity and having a
shape of initial temperature distribution (Kuzkin
and Krivtsov 2017b).

Solutions (76) satisfy the following differen-
tial equation:

. 1 .
T+;T=chw (77)
with initial conditions
Tli=o =To(x),  Tli=o=0.  (78)

Equation (77) is a particular case of the Darboux
equation. Equation (77) for thermal processes in
harmonic one-dimensional crystal is originally
derived in Krivtsov (2015a,b). This equation is
nonautonomous: one of its coefficients explicitly
depends on time ¢. Despite the fact that the co-
efficient in Eq. (77) has singularity for t = 0, its
solution with initial conditions (78), as it follows
from (76), has no singularities for any smooth

To(x). Equation (77) is nonautonomous because
it describes an evolution of the heat impact —
the sudden heat perturbation (74) happened at
t = 0. The coefficient  in the equation is the time
elapsed from the moment of the heat impact. That
is why Eq. (77) is not time-invariant (it changes
with the time shift 1 — ¢ + t), and it can
be considered only with initial conditions (78).
General heat transfer processes are described by
Eq. (73), which is much more complicated, but
it has constant coefficients, and therefore it is
autonomous and time-invariant.

Equation (77) looks similar to the equation of
hyperbolic heat conductivity:

T+%T=HTC (79)
where 7 is the relaxation constant and c¢ is the
wave front velocity. Indeed, both equations
demonstrate wave behavior with the finite speed ¢
for the front propagation. This differs them from
the classic Fourier heat equation 7 = BT (B is
the thermal diffusivity). For the Fourier equation,
a signal propagates with an infinite speed, and
therefore the heat front is absent. Equation (79)
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is empiric, while Eq. (77) is rigorously derived
from lattice dynamics equations (1).

Heat Flux
The heat flux (10) in the harmonic case reads

h=—(Fiier) = ~C (&T).  ©0)
where C is the bond stiffness. Time differentia-
tion with subsequent continualization yields

=3 pekp(T61) kg < — (7).
(81)
Therefore, once the Eq. (73) for the nonlocal tem-
peratures is solved, the heat flux can be obtained
from relation (81). However, it is seen that the
heat flux depends not only on the kinetic temper-
ature 7 but also on the nonlocal temperature 0.
That is why it is impossible to close thermome-
chanics equations in general nonadiabatic case
without using Eq. (73) or its nonlinear extension.
For the heat impact problem, the solution of
Eq. (73) yields the following constitutive relation
for the heat flux (Krivtsov 2015a,b):
A 1 2 /
h+;h=—,oc kgT’, (82)
which is an analogue of the Fourier law for the
considered system.

Summary

Equations of thermomechanics for both discrete
and continuum levels consist of balance equa-
tions (balance of momentum, energy, etc.) and
constitutive equations (equations of state). At the
discrete level, the constitutive equations relate
the bond deformations and forces and at the
continuum level — the temperature (or thermal
energy), strains, stresses, heat fluxes, etc. Bal-
ance equations can be obtained rigorously at
both levels. Derivation of constitutive equations
is much more complicated. Fundamental laws of
thermodynamics and the principle of material ob-
jectivity yield some restrictions on the structure
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of constitutive equations. However, the ambiguity
in the construction of constitutive equations is
rather large. In this situation, it is useful to con-
sider discrete systems, for which the constitutive
equations can be derived analytically.

Transition from discrete to continuum descrip-
tion is demonstrated above for a number of rel-
atively simple but still challenging systems. In
the adiabatic case (zero heat flux), the transition
can be carried out for anharmonic crystals. Series
expansion of stress and internal energy with re-
spect to small parameter characterizing thermal
motion yields equations of state. In two- and
three-dimensional cases, the equation of state in
the Mie-Griineisen form has sufficient accuracy.
For one-dimensional and quasi-one-dimensional
crystals, the Mie-Griineisen equation of state can
be inaccurate or even qualitatively wrong. In this
case, more accurate nonlinear equations of state
described above should be used.

If the heat transfer is taken into account, the
situation is more complicated. Therefore, only
the simplest harmonic system was considered.
Generally, the presented approach for description
of heat transfer can be extended to arbitrary
harmonic systems and some anharmonic systems,
but this requires additional considerations.
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