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1.  Introduction

Analytical and experimental results demonstrate an anoma-
lous nature of thermal processes in ultrapure materials [1–9]. 
These processes can be caused by shock waves [10–13] or 
by ultrashort laser pulses [14–20]. One-dimensional crystal 
lattices are subject of an extensive research since they admit 
analytical solutions and allow verification of fundamental 
phenomena inherent also for higher dimensional systems  
[21–25]. An analytical description of the thermal processes 
in non-equilibrium harmonic crystals can be obtained on 
the basis of the covariance analysis [1, 3, 4, 26]. The corre
sponding description of the anomalous heat propagation is 
presented in papers [3, 27, 28] for one dimension and in works 
[4, 29–31] for two and three dimensions.

One of the specific phenomena of the nonequilibrium 
thermal processes in discrete molecular systems is the high-
frequency oscillations of the kinetic temperature, which have 
long been known from the results of numerical simulation 
[32]. Covariance analysis admit analytical description of this 
phenomenon, for example in the case of the instantaneous 
thermal perturbation of the simplest model of one-dimensional 

harmonic crystal these oscillations are described by the Bessel 
function of the first kind and the zero order [26], similar result 
was obtained earlier by direct analytical solution of the equa-
tions of the atoms motion by Ilya Prigogine [33]. For the case 
of the one-dimensional crystal on an elastic substrate the same 
problem is solved in [24], for higher dimensions in papers  
[4, 30].

Unlike previous papers [3, 24, 26, 27], where the main 
attention is focused on infinite crystals, the present paper 
investigates thermal processes in finite crystals [34]. The 
systems with a finite number of particles are of practical 
importance, especially because nanotechnologies are actively 
developing [35–39]. In the current paper it is demonstrated 
that for the finite crystals the temperature oscillation ampl
itude is decreasing only until a certain moment in time when 
a sharp increase of the amplitude of the kinetic temperature 
oscillations is realized. This phenomenon can be interpreted as 
a thermal echo, which will be analyzed in detail in the present 
paper. Exact and asymptotic formulas describing the oscilla-
tions of the kinetic temperature are obtained. These results, in 
particular, are important for description of the anomalous heat 
propagation in ultrapure materials [3, 5, 40].
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2.  Dynamics of the crystal

2.1. The mathematical model

We consider a one-dimensional harmonic crystal containing 
N  identical particles connected by harmonic springs. The 
equation of motion for the particles is

ük = Luk , Luk
def
= ω2

e (uk+1 − 2uk + uk−1),� (1)

where uk  is the displacement of the kth particle (k = 0..N − 1), 
L is the liner deference operator, ωe =

√
C/m  is the elemen-

tary frequency, C is the stiffness of the interparticle spring, m  
is the particle mass. Periodic boundary conditions are used:

u0
def
= uN , uN+1

def
= u1.� (2)

The initial conditions are

uk = 0 , vk
def
= u̇k = σρk,� (3)

where ρk are independent random numbers with zero math-
ematical expectation and unit variance, σ is the initial velocity 
variance. These initial conditions correspond to an instanta-
neous temperature perturbation, such as perturbations caused 
by an ultrashort laser pulse [14, 15, 17]. The crystal temper
ature before the perturbation is zero.

The initial problem (1)–(3) describes stochastic dynamics 
of the particles in the crystal. Further the deterministic equa-
tions for the statistical characteristics of motion (covariances) 
are analyzed to describe the thermal processes in the crystal.

2.2. The dynamics of covariances

One of the key statistical characteristics of the crystal is the 
kinetic temperature T , which can be determined by the mathe-
matical expectation 〈...〉 of the square of the centered velocity. 
The corresponding formula for a one-dimensional case is

T =
m
kB

〈ṽ2
k〉,� (4)

where

ṽk
def
= vk − v̄ , v̄ def

=
1
N

N−1∑
k=0

vk.� (5)

Here v̄ is the center of mass velocity and kB is the Boltzmann 
constant. In order to obtain a closed system of equations for 
statistical characteristics it is imperative that we consider the 
covariances of the particle velocities [3, 26, 30]:

κn = 〈ṽkṽk+n〉,� (6)

which are the quantities characterizing motion of the particle 
pairs. The following initial problem for the velocity covarian-
cies can be obtained by differentiating the covariances using 
relations (1)–(3) (see appendix A):

κ̈n − 4Lκn = −2Lκ0
n,

t = 0 : κn = κ0
n

def
= σ2δN

n − σ2

N
, κ̇n = 0,

�
(7)

where δN
n  is the periodical Kronecker symbol: δN

n = 1 for 
n divisible by N  (including n = 0), otherwise δN

n = 0. 
Additionally the covariances satisfy the periodicity conditions: 
κn+N = κn. After solving the initial problem (7), the kinetic 
temperature of the crystal can be found using formula (4), 
which can be written as

T =
m
kB

κn

∣∣∣∣
n=0

.� (8)

2.3.  Representation via Bessel functions

Solution of the initial problem (7) yields the following expres-
sion for the temperature of the crystal (see appendix B):

T = TE +
δT
2N

N−1∑
k=0

cos

(
4ωet sin

πk
N

)
� (9)

where

TE
def
=

∆T
2

(
1 − 1

N − 1

)
� (10)

is an equilibrium temperature3,

∆T def
=

m
kB

κ0
n

∣∣∣∣
n=0

= σ2
(

1 − 1
N

)
� (11)

is the temperature jump initially caused by the thermal per-
turbation and

δT def
= ∆T

(
1 +

1
N − 1

)
.� (12)

Expression (9) accurately describes the time dependence 
of the kinetic temperature of the harmonic crystal after an 
instant heat perturbation. Formula (9) can be effectively used 
for computations, however it is less appropriate for an ana-
lytical analysis. Therefore an alternative representation for 
the crystal temperature in terms of the Bessel functions is be 
obtained below.

Let us consider identity [41]

cos(z sinϑ) =
∞∑

p=−∞
J2p(z) cos(2pϑ),� (13)

where J2p(t) is the Bessel function of the first kind of order 2p. 
Substitution ϑ = πk/N  and summation over k yields

1
N

N−1∑
k=0

cos

(
z sin

πk
N

)
=

∞∑
p=−∞

J2p(z)δN
p ,� (14)

where

δN
p =

1
N

N−1∑
k=0

cos

(
p

2πk
N

)
.� (15)

3 For an infinite crystal the kinetic temperature is tending to TE; for a finite 
crystal the temperature is oscillating in the vicinity of TE.
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As mentioned before, δN
p = 1 if p is divisible by N , overwise 

δN
p = 0. Identity (15) is derived in appendix C. Using proper-

ties of δN
p  formula (14) can be reduced to

1
N

N−1∑
k=0

cos

(
z sin

πk
N

)
=

∞∑
p=−∞

J2pN(z).� (16)

Substitution of the obtained formula to expression (9) gives

T = TE +
δT
2

∞∑
p=−∞

J2pN(4ωet).� (17)

Using identity J−2pN ≡ J2pN formula (17) can be rewritten as

T = TE +
δT
2

J0(4ωet) + δT
∞∑

p=1

J2pN(4ωet),� (18)

where TE and δT  is defined in (10) and (12). Thus, the kinetic 
temperature can be represented as the equilibrium temper
ature plus the sum of terms proportional to the Bessel func-
tions of multiple orders.

Both expressions (9) and (18) are exact, but expression 
(18) is more suitable for the analytical analysis. Indeed, for 
a positive integer index µ the Bessel function Jµ(x) is almost 
zero for all positive x up to a vicinity of the point x = µ. 
Therefore, for a finite moment in time only a finite number of 
terms gives noticeable contribution to representation (18). For 
illustration consider series

S(x) = J0(x) + 2Jµ(x) + 2J2µ(x) + ... + 2Jpµ(x) + ...� (19)

Graphs for S(x) and the first three terms of its representation 
(19) are shown in figure 1. The figure shows that for almost4 
the entire interval [0, µ) the sum S(x) is determined only by 
the first term in the expression (19). Similarly, for almost the 
entire interval [µ, 2µ) the sum S(x) is determined by the first 
two terms, and so on.

If the crystal has a nonzero initial temperature T0 before 
the heat perturbation then the equilibrium temperature (10) 
contains additional term T0:

TE
def
= T0 +

∆T
2

(
1 − 1

N − 1

)
,� (20)

while expressions (17) and (18) remain unchanged. This is 
a direct consequence of the superposition principle, which is 
valid for harmonic systems

T̃ = T − TE

=
δT
2


J0(4ωet) + 2

∞∑
p=1

J2pN(4ωet)


 ,

�
(21)

where δT = ∆T
(

1 + 1
N−1

)
 (12), ∆T  is the temperature 

jump5 caused by temperature perturbation. As follows from 
expression (21) the equilibrium temperature TE is the temper
ature reached when N → ∞, t → ∞ (equilibrium state of an 
infinite crystal).

3.  Oscillations of the kinetic temperature

3.1. Thermal echo

According to the virial theorem [42, 43] in harmonic systems 
a time average for both kinetic and potential energies tends 
to the same value. Earlier studies [26, 33] have shown that in 
the one-dimensional infinite harmonic crystal this equilibra-
tion process is accompanied by the energy (and, consequently, 
the temperature) oscillations described by the Bessel function 
of the zero order. According to formula (17) or (18) the same 
process in the finite harmonic crystal is described by an infi-
nite series of the Bessel functions with multiple orders.

This phenomenon referred to as thermal echo can be 
explained as follows. The solution of the initial problem  
(1)–(3) due to the linearity of the system can be represented 
as a superposition of N  problems for each individual par-
ticle, where only this certain particle was randomly dis-
turbed. For each particle elastic waves propagate to the right 
and left from its position in the crystal and superposition of 
these waves for all particles describes the thermal process in 
the crystal. Since the crystal is periodic (circular), the elastic 
waves meet each other after they have passed half-length of 
the crystal. All particles were disturbed instantly, therefore 
the waves initiated from each particle meet simultaneously, 
causing a sharp short-term increase of the system’s kinetic 
temperature—the first thermal echo. Then the waves travel 
further and meet again—the second thermal echo is realized, 
and so on. Each thermal echo (18) is expressed in terms of 
the Bessel functions of order 2pN , where p = 1, 2, 3, ... is the 
echo number.

The crystal is discrete system that posses dispersion—
the wave speed depends on the wave length. The fastest are 
the long waves that travel with the speed of sound cs = aωe   
[44, 45], where ωe is an elementary frequency (1), a is the lat-
tice step. These waves meet after they pass half-length of the 
crystal, therefore the thermal echo period is

Figure 1.  Bessel functions multiple orders, µ = 103 (the top three 
graphs); sum of the Bessel functions (the lower lines).

4 Except a small vicinity of the right boundary x = µ, where the width of 
this vicinity can be determined by expression (34).

5 The temperature jump is the difference between the temperature of the 
crystal at the point in time immediately after the temperature perturbation, 
and the temperature at the point in time immediately preceding the temper
ature perturbation.

J. Phys.: Condens. Matter 31 (2019) 095702
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τ0 =
L

2cs
=

N
2ωe

,� (22)

where L = Na is the crystal length. The number of thermal 
echos in the system up to the time t can be obtained using ratio 
t/τ0. Shorter waves are slower and meet later—therefore the 
thermal echo has a finite width, and consequently each next 
thermal echo is less prominent.

The time t = pτ0 we will call the reference time for the thermal 
echo number p. At that time the long waves from the initial dis-
turbances have the meeting number p, that causes the temperature 
oscillations of corresponding the thermal echo.

3.2. Thermal echo implementations

Using formula (18) the kinetic temperature can be represented 
in the form:

T = TE + TB + T1 + T2 + ... + Tp + ...;

TB =
δT
2

J0(4ωet) , Tp = δTJ2pN(4ωet);�
(23)

where TE is the equilibrium temperature (18), TB is the basic 
thermal mode, and the subsequent terms Tp are the thermal 
modes with the number p = 1, 2, 3, ...

The temperature oscillations in a crystal containing 106 par-
ticles are shown in figure 2. The plots show the time vicinity 
of the first, second and third thermal echo. The first thermal 
echo is initiated for t ≈ τ0. The corresponding temperature 
oscillations (23) are described by the first thermal mode T1.

Each thermal mode is represented by the corresponding 
Bessel function. Bessel functions are not periodic, however it 
is convenient to consider a quasiperiod—the interval between 
two consequent maximums of the Bessel function. This quasi
period is not a constant, its value decreases for each next 
maximum.

As can be seen from figure 2(a), for t ≈ τ0 the oscillations 
are superposition (18) of the basic mode TB (small short oscil-
lations on the graph) and the first mode T1 (global oscillations 
on the graph). For t ≈ τ0 the quasiperiod of the basic mode 
is mach smaller than the quasiperiod of the first mode. The 
larger is the crystal, the more significant is the discrepancy. 
For times t ≈ 2τ0, the oscillation parameters of the basic and 
the first thermal modes become close, which leads to a beat 
phenomena. For t ≈ 2τ0, the second thermal echo is realized, 
superimposed by the mentioned beatings—see figure  2(b). 
For t ≈ 3τ0, the third thermal echo is realized (see figure 2(c)). 
Numerical experiments show that for large times plural reali-
zations of the thermal echo result in an increasingly complex 
form of beats. The realizations of the thermal echo with large 
ordinal numbers is less pronounced against the background 
of residual oscillations from previous implementations of 
the thermal echo. As a result, at large times the temperature 
fluctuations acquire a quasi-stochastic character resembling 
thermal noise.

Figure 3 shows comparison of the analytical solu-
tion (bottom) and the computer simulation of the crystal 
dynamics (top). The crystal under consideration contains 
103 particles. The analytical solution is described by formula 
(9) or (18). The computer simulation uses the method of 
central differences to solve numerically the system of 103 
differential equations  of the chain dynamics (1) with the 
integration step 0.02/ωe. The results are regarded over 100 

Figure 2.  Beats of temperature imposed on three successive 

thermal echoes. The number of particles N = 106, TE is the 

equilibrium temperature, δT = ∆T
(

1 + 1
N−1

)
, ∆T  is the 

temperature jump of the crystal caused by the thermal perturbation, 
t is time, τ0 is the period of realization of the thermal echo.

Figure 3.  Oscillations of kinetic temperature T  in the finite crystal. 
Numerical (top) and analytical (bottom) solutions. The averaging 
is performed using 100 numerical experiments. The number of 
particles N = 103, t is time and ωe is the elementary frequency.

J. Phys.: Condens. Matter 31 (2019) 095702



A S Murachev et al

5

realizations of such chain with an independent random ini-
tiation. As it can be seen from figure 3 the graphs of the 
computer simulation and the analytical solution are almost 
identical.

3.3.  Asymptotics

Expression (18), which describes the temperature oscillations 
in the crystal, includes Bessel functions of multiple orders. In 
the time-vicinity of the thermal echo appearance the following 
asymptotic representation of the Bessel functions [41] can be 
used:

Jµ(x) =
(

2
µ

)1/3

Ai

((
2
µ

)1/3

(µ− x)

)
+ O(µ−1),

� (24)
where Ai is the Airy function6 [41]. This representation is 
valid7 for x ≈ µ � 1. More general asymptotics, which is 
valid for any x is given in appendix D. The important advan-
tage of these asymptotic representations is that they express 
special function Jµ(x) of two variables x, µ in terms of a 
special Airy function of a single variable. Therefore each 
thermal mode (23) except the basic mode can be obtained 
from the Airy function by a linear transformation. Substitution 
µ = 2pN  and x = 4ωet to (24) allows to obtain asymptotics 
the thermal echo. The Airy function graph in a form of Ai(−z) 
is plotted in figure 4. This graph demonstrates the shape of the 
thermal echo in the thermodynamic limit (N → ∞), where the 
value z = 0 corresponds to the reference time t = pτ0 of the 
thermal echo number p. It is a bit unexpected that the signifi-
cant temperature increase starts before the reference time, that 
is before the long waves from the initial disturbance formally 
meet each other. Probably this is due to the nature of discreet 
systems, where some energy can be transferred faster then the 
speed of sound of the corresponding continuum system.

Then the temperature (18) can be represented as

T ≈ TE+
δT
2

J0(4ωet)

+ δT
∞∑

p=1

1
3
√

pN
Ai
(

2pN − 4ωet
3
√

pN

)
.

�
(25)

For large values of arguments x � µ+ 1 the following 
asymptotics for the Bessel functions fulfils [41]:

Jµ(x) =

√
2
πx

cos
(

x − πµ

2
− π

4

)
+ O(x−3/2).� (26)

Asymptotic representations (24) and (26) for the Bessel 
functions allows to obtain the basic characteristics of the 
temperature oscillations for large N .

3.4.  Characteristics of thermal echo

Let us consider the thermal mode number p:

Tp = νpδT J2pN(4ωet)� (27)

for large values of N , where νp = 1
2 for p = 0 (the basic 

thermal mode) and νp = 1 otherwise.
In the vicinity of the reference time t = pτ0 the thermal 

mode Tp with the use of asymptotics (24) can be represented 
as

Tp �
νpδT

3
√

pN
Ai
(

2pN − 4ωet
3
√

pN

)
.� (28)

The Airy function Ai(−z) is depicted in figure 4. Let zk  be 
the successive points of the local maximums of this function, 

where k = 1, 2, 3, ... is the point number; Ak
def
= Ai(−zk) are 

the corresponding maximums of the function. The first three 
values of these constants are [46]:

z1 ≈ 1.0 : A1 ≈ 0.53,
z2 ≈ 4.8 : A2 ≈ 0.38,
z3 ≈ 7.4 : A3 ≈ 0.34.

�
(29)

Then the corresponding points of the first local maximums tp 
and the maximum values Mp for the thermal mode (28) are

tp � 1
4ωe

(
2pN + 3

√
pN

)
, Mp �

νpδT
3
√

pN
A1.� (30)

The formula for tp can be rewritten in the form

tp � pτ0

(
1 +

1
2( pN)2/3

)
.� (31)

Hence the relative difference between the reference time 
and the time of the temperature maximum tp decreases with 
increase of N , which proves that these times coincide in the 
continuum limit.

In the vicinity of the reference time t = pτ0 the previous 
thermal mode Tp−1 (27) with the use of asymptotics (26) can 
be represented as

Tp−1 � (−1)Nνp−1
δT√
πNp

cos
(

4ωet − πNp − π

4

)
.� (32)

Figure 4.  The Airy function. Such a form takes any thermal echo 
for a sufficiently large number of particles N .

6 The Airy function can be defined as: Ai(x) = 1
π

∫∞
0 cos

(
t3

3 + xt
)

dt.
7 The representation (24) is given by the formula 9.3.23 [41]. It is valid for 
|µ− x|/ 3

√
µ � A, where A is an arbitrary positive constant.
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Let us define the relative height of the thermal echo hp as 
a ratio of the maximum value of the thermal mode number 
p (30) to the amplitude of the residual oscillations from the 
previous thermal mode (32), which gives8

hp �
√
πA1

6
√

pN
νp−1

.� (33)

Thus the relative height of the thermal echo hp increases with 
increasing N . Therefore for very large N  the residual oscilla-
tions can be considered as negligible. However this increase is 
very slow—proportional to N1/6, hence even for N = 106 the 
residual oscillations are quite noticeable.

To analyze the thermal echo properties let us introduce its 
relative width wk as the ratio of the quasiperiod of the corre
sponding Bessel function to the asymptotic period of Bessel 
functions at infinity. From formulas (24)–(26) it follows that 
the relative width is proportional to N1/3 (see appendix E):

wk �
zk+1 − zk

2π
3
√

pN.� (34)

From relations (33) and (34) it follows that for large N  the 
residual oscillations from the previous thermal echo are small 
and frequent in comparison with the current thermal echo 
wave—see figure 2.

3.5.  Example

As an example consider a chain of N = 103 carbon atoms 
with the periodic boundary conditions and initial temperature 
T0 = 0 ◦C. The heat perturbation instantaneously increases 
the temperature up to the value

T0 +∆T = 100 ◦C.� (35)

The chosen value of ∆T  is sufficiently small in comparison 
with the melting temperature of carbon (3500 ◦C), so as not to 
take into account the nonlinearity of the interatomic interac-
tion. As a result of this perturbation the temperature oscilla-
tions near the equilibrium value of TE ≈ 50 ◦C are realized in 
the crystal. The graph of the temperature oscillations for the 
crystal calculated using numerical and analytical solution is 
shown in figure 3. Formula (30) gives for the maximum value 
of the first thermal mode

M1 ≈ 5.3 ◦C =⇒ TE + M1 ≈ 55.3 ◦C.� (36)

Thus the thermal echo brings approximatly 10% change 
of the temperature comparing to the final temperature raise 
TE − T0 ≈ 50 ◦C.

These results are slightly perturbed by the residual oscil-
lations from the previous (the basic) thermal mode. Formulas 
(33) and (34) yield

h1 ≈ 5.9 , w1 ≈ 11.3,� (37)

hence the residual oscillations are approximately six times 
weaker and have an 11 times shorter period than the oscilla-
tions caused by the first thermal echo. The residual oscillations 
according to formula (32) have the amplitude of approximately 
0.9 ◦C, which is about 17% of M1. If the residual oscillations 

are taken into account the maximum temperature achieved by 
the first thermal echo is approximately 56.2 ◦C.

The above characteristics depend only on the number of 
particles N , while the period τ0 of the thermal echo reali-
zation depends on the physical properties of the crystal 
and the type of oscillations (longitudinal or tranversal). 
Let us consider longitudinal oscillations, the mass of the 
carbon atom m = 1.99 × 10−26 kg and the stiffness of dia-
mond bond C = 1824 N m−1 [47]. Then formula (22) gives 
τ0 = 1.65 × 10−12 s that is a N

4π ≈ 80 times greater than the 
atomic oscillation period.

The obtained numerical characteristics of the thermal echo 
can be used to determine its occurrence in natural experiments.

4.  Conclusions

The paper considers a finite one-dimensional harmonic crystal 
subjected to an instant spatially uniform thermal perturbation. 
The numerical and analytical analysis presented in the paper 
demonstrates the phenomenon of the thermal echo: a sharp 
short-term temperature rise that is periodically realized in the 
crystals.

Previous papers [26, 33] have shown that in the infinite 
one-demensional harmonic crystal the instant thermal pertur-
bation produces the thermal oscillations with a monotonically 
decreasing amplitude, these oscillations are described by the 
zero order Bessel function. In the present paper it is shown 
that in the finite harmonic crystal the sequence of realizations 
of the thermal echo is described by a series of the Bessel func-
tions of multiple orders. Any thermal echo in the thermody-
namic limit is described by the Airy function. A superposition 
of the temperature oscillations generated by the sequential 
thermal echoes results in a temperature beats. Each subse-
quent thermal echo complicates the shape of the beats.

It follows thus from the analysis that the maximum temper
ature increase caused by the thermal echo decreases as 3

√
pN  

(30), where p the thermal echo number and N  is the number of 
particles in the crystal. The duration of the thermal echo grows 
by the same law (34). Between any two thermal echoes the 
amplitude of the temperature oscillations decreases in propor-
tion to the square root of time (26). The larger is the crystal, 
the more noticeable are the temperature increases compered 
the residual oscillations (33).

Thus, an analytical description of the thermal echo for one-
dimensional crystals is presented. Our results can be generalized 
to two- and three-dimensional cases using technique presented 
in [4, 30]. Similar effects can be find in nanotubes, where we 
expect to observe two thermal echoes. The first one is caused by 
the elastic waves propagation along the tube direction, and the 
second one in the transverse direction. Influence of anharmonic 
effects on similar thermal processes is studied numerically in 
[4]. The investigation shows that harmonic approximation is 
quite accurate in the case of small nonlinearity.

This phenomenon is an important feature of thermal pro-
cesses in finite systems and should be taken into account in the 
development of the modern micro- and nanosize electronic 
devices.8 For p = 1 the previous mode is TB with twice less amplitude—see (23).
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Appendix A. The initial problem for the velocities 
covariance

Let us consider displacements covariance and velocities 
covariance:

ξn = 〈ukuk+n〉 , κn = 〈vkvk+n〉.� (A.1)

Differentiation of expression (A.1) gives us the equation

κ̇n = Lξ̇n,� (A.2)

where L is the operator from the problem (1). The equa-
tion (A.2) leads to the conservation law:

κn − Lξn = ε0
n,� (A.3)

where the constant ε0
n can be obtained from the initial condi-

tions (3):

ε0
n = κn

∣∣∣∣
t=0

= σ2〈ρ̃kρ̃k+n〉
∣∣∣∣
t=0

,� (A.4)

and ρ̃k is centered random numbers. Let us consider the fol-
lowing expression:

〈ρ̃kρ̃k+n〉 = 〈ρkρk+n〉 − 2〈ρkρ〉+ 〈ρ2〉,� (A.5)

where ρ  is the mean value of ρk. Let us take into account that

t = 0 : 〈ρkρ〉 =
ρk

N

N−1∑
n=0

ρk+n =
1
N

, ρ2 =
1
N

,� (A.6)

then

ε0
n = σ2δn −

σ2

N
.� (A.7)

The equations below can be obtained by differentiating twice 
(A.1):

ξ̈n = 2(κn + Lξn), κ̈n = 2L(κn + Lξn).� (A.8)

The using of conservation law (A.3) allow us to close equa-
tion for each covariance:

ξ̈n − 4Lξn = 2Lε0
n, κ̈n − 4Lκn = −2Lε0

n.� (A.9)

The second equation  of (A.9) and (A.4) gives us the initial 
problem for κn.

Appendix B.  Equation for velocities covariances

Let us consider the initial problem (7) with the corre
sponding boundary conditions:

κ̈n − 4Lκn = −2σ2Lδn,

t = 0 : κn = σ2δn −
σ2

N
, κ̇n = 0,

κ0 = κN , κN+1 = κ1.

� (B.1)

Then we apply the discrete Fourier transformation

κ∗
k =

N−1∑
n=0

κne
−2πikn

N� (B.2)

to the initial problem (B.1):

¨̌κk + 4Lκ̌k = 0,

t = 0 : κ̌k =
σ2

2
− σ2δk , ˙̌κk = 0,

�
(B.3)

where

κ̌k = κ∗
k − σ2

2
, L = 4ω2

e sin
2 πk

N
.� (B.4)

The solution of the problem (B.3) is

κ̌k =
σ2

2
(1 − 2δk) cos

(
4ωet sin

πk
N

)
,� (B.5)

hence

κ∗
k =

σ2

2
(1 − 2δk) cos

(
4ωet sin

πk
N

)
+

σ2

2
.� (B.6)

The inverse Fourier transform for κ∗
k  is

κn =
1
N
σ2

2

N−1∑
k=0

(
1 + cos

(
4ωet sin

πk
N

))
ei 2πnk

N − σ2

N
.� (B.7)

The κn|n=0 which is proportional ∆T  is

κn|n=0 =
σ2

2

(
1 − 2

N

)
+

1
N
σ2

2

N−1∑
k=0

cos

(
4ωet sin

πk
N

)
.

� (B.8)
The (B.8) can be represented following form

κn|n=0 =
σ2

2

(
1 − 1

N

)(
1 − 1

N − 1

)

+
1
N
σ2

2

(
1 − 1

N

)(
1 +

1
N − 1

) N−1∑
k=0

cos

(
4ωet sin

πk
N

)
.

� (B.9)

Appendix C. The formula for the sum of cosines  
of multiple angles

Let us demonstrate that the sum of the multiple angles of the 
cosine can be represented by the following form:

1
N

N−1∑
k=0

cos

(
p

2πk
N

)
= δN

p .� (C.1)

The sum of cosines of multiple angles can be calculated as 
a sum of exponentials, which is calculated as the sum of the 
geometric progression:
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1
N

N−1∑
k=0

cos kφ = Re
N−1∑
k=0

eikφ = Re
(

eiNφ − 1
eiφ − 1

)
.� (C.2)

Substitution k = πk/N  and the calculation of the real part 
(C.2) gives us the following representation:

1
N

N−1∑
k=0

cos

(
p

2πk
N

)
=

sin(2πp)
2N

ctg
πp
N

+
sin2(πp)

N
.� (C.3)

For all p, except p divisible by N , the expression (C.3) is 
equal to 1, and for p divisible by N , the value of the expression 
is equal to 0.

Appendix D.  Asymptotics for the Bessel functions

An asymptotic for the Bessel functions of large orders µ and 
arbitrary argument x is represented by the series 9.3.35 from 
[41]. The first term of this expression can be represented as the 
following composition:

Jµ(x) �
(

4ζ
1 − ξ2

)1/4 Ai
(
µ2/3ζ

)

µ1/3 , µ → ∞,� (D.1)

where

ξ =
x
µ

ζ =




( 3
2

)2/3
[
ln

(
1+
√

1−ξ2

ξ

)
−
√

1 − ξ2

]2/3

,

if 0 � ξ � 1;

−
( 3

2

)2/3
[√

ξ2 − 1 − arcsec ξ
]2/3

,

if ξ � 1,

and Ai is the Airy function [41].
In the case of the ξ → 1, the representation (D.1) is reduced 

to the following one:

Jµ(x) ≈
(

2
µ

)1/3

Ai
(

21/3µ2/3(1 − ξ)
)

,� (D.2)

where the approximation ζ ≈ 21/3(ξ − 1) is used. The (D.2) is 
equivalent to representation (24), considered before.

Appendix E.  Relative duration of the thermal echo

Let us denote by {xi} the set of points in which the Bessel 
function Jµ(x) has local maxima (x1 is the first local max-
imum, x2 is the second, etc). The approximate values of xi 
are found from the condition that the argument of the Airy 
function in the expression (24) is equal to the values −zi (29):

xi ≈ µ+ zi

(µ
2

)1/3
, Jµ(xi) ≈

(µ
2

)−1/3
Ai(−zi).� (E.1)

The value of the asymptotic period of the Bessel function is 
2π as seen from the formula (26). Then the expression for the 
duration of the thermal echo becomes:

wi
def
=

xi+1 − xi

2π
≈ zi+1 − zi

2π

(µ
2

)1/3
.� (E.2)
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