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Description of elastic properties of diamond- and sphalerite-structured
diatomic crystals with the use of moment interaction
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A mechanical model of diatomic lattice which takes into account force and moment interactions is proposed. Relations between
macroscale elastic moduli and microscale longitudinal and transverse stiffnesses of interatomic bonds are derived. In the framework of the
proposed model, crystals with diamond and sphalerite lattices are considered. It is shown that the model offers much universality allowing
quite accurate description of elastic properties of a wide range of covalent crystals.
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1. Introduction

Carbon is an extremely significant chemical element.
Carbon compounds constitute the basis for life and their
properties govern to a great extent the range of conditions
in which similar life forms can exist. There are numerous
allotropic modifications of carbon much different in physi-
cal properties. The main and well-studied modifications of
carbon are graphite and diamond. With advances in techno-
logies, other forms of carbon such as fullerenes, carbon na-
notubes and graphene were discovered; their unique me-
chanical properties open up new opportunities for practical
application of the materials in various fields of science and
technology. In this context, it becomes particularly urgent
to develop models that allow adequate and unified descrip-
tion of mechanical properties of carbon, its modifications
and compounds.

The variety of carbon modifications owes to the capa-
bility of carbon to form different chemical bonds. The elec-
tron orbitals of a carbon atom can vary in geometry de-
pending on their hybridization. In all cases, the bond is di-
rectional (covalent); therefore, the simplest model in which
atoms are represented by material points bound through pair
force interaction is found inadequate. The approach con-
sidered in the paper consists in taking additional account of
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pair moment interaction with the potentials dependent on
the relative positions and rotations of two interacting par-
ticles. Thus, the interaction forces between atoms are no
longer central: a transverse force, in addition to a longitu-
dinal force, appears making it possible to account for di-
rectivity of bonds in covalent structures.

The use of moment interaction for description of crys-
talline structures is discussed in [ 1-8]. Noteworthy also are
the works devoted to description of mechanical properties
of carbon structures [9, 10].

In the paper, we follow and develop the approaches pro-
posed in [3] where macroscale relations of elasticity for
arbitrary polyatomic lattices were derived taking into ac-
count microscale moment relations. The developed ap-
proaches are applied to describe elastic properties of dia-
mond-structured crystals (crystals of diamond, silicon, ger-
manium and tin). The process under consideration is elas-
tic deformation of the system. Each particle is taken to in-
teract only with a limited number of neighbors, and this
allows one to arrive at a local theory in going to the macro-
scale. The characteristics of elasticity are obtained with an
energy approach in which strain energy expressions are
compared giving a relation between micro- and macroscale
parameters. The approach provides an easier way, compared
to [3], to obtain required relations, particularly in the case
of moment and many-body interactions. Relations between
macroscale elastic moduli and parameters of longitudinal
and transverse stiffnesses of interatomic bonds are derived.
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It is shown that these relations can be successfully applied
to description of compounds with sphalerite lattice, i.e.,
those whose lattice is similar to that of diamond but has
atoms of two types in its nodes.

2. Derivation of equations

Let us derive expressions that define the stiffness ten-
sor of a diatomic lattice with regard to force and moment
interactions. Let there be a complex lattice whose elemen-
tary cell contains two atoms. By convention the atoms are
termed atoms of the first and second type. Atoms of each
type form a simple crystal lattice, with the lattices being
congruent. Then, we choose one of the atoms of the first
type and term it a reference atom. The atoms with which
the reference atom interacts are numbered by indices o.
The potential energy for the reference atom can be repre-
sented in the form:

1
W—WZH(AOL), (1)

0 o
where I1, isthe interaction potential of the reference atom
with an atom a. The factor 1/2 in formula (1) appears be-
cause the potential I1, describes the interaction of two
atoms. The energy for the elementary lattice cell is deter-
mined by the formula

wE 2=y, @

Yo Vo a

where V), is the elementary cell volume for an undeformed
lattice; the factor 2 is required because the elementary cell
contains two atoms (the energy per atom of the elementary
cell is the same due to symmetry of the lattice).

The vectors directed from the reference atom to an atom
o for an undeformed crystal are denoted as a,,. The lattice
atoms are modeled by solids whose displacement and rota-
tion vectors with respect to their position in the undeformed
crystal are denoted as u, and@,; the displacement and
rotation vectors of the reference atom are designated as u
and @. Then, the interaction potential of atoms can be rep-
resented in the form [3]:

I, =1/2¢e,-A, g, +&, B, -k, +1/2x -G, - ¥, (3)
where €, and ¥, are the strain vectors of interatomic
bonds:

€ = Uy —U+1/22,X(9y +0) K, T @ -0, (4)
A,,B, and G, are the stiffness tensors of interatomic
bonds (of the second order). Expression (3) has no term
linear in strain and this means the absence of initial bond-
ing forces (in the equilibrium state, the bonds in the crystal
are free of stress). The use of the approximation is justified
because in reality, the initial bonding forces are small due
to fast weakening of the interaction. If we take these forces
into account, the formulae will be too complicated and gene-
rally speaking we will have to resort to nonlinear theory.

On the macroscale, the specific (per unit volume) strain
energy in a moment medium at small strains has the form

[3]:

w=1/2e-*A--e+e-*B--x+1/2x-*G -k 5)
Here € and x are the macroscale strain tensors:
e vu +Exo, e Vo, (6)

where u and @ are the displacement and rotation vectors of
an element of the medium; V is the vector differential ope-
rator; *A, “B and *G are the stiffness tensors of the me-
dium (of the fourth order).

For homogeneous' deformation of the lattice, the fol-
lowing representations hold true:

u, =u+a, -Vu+v,g ¢, =0+a, -Vo+v vy, (7)
where { and y are the translational and angular residual
vectors that describe respectively displacements and rota-
tions of particles of one sublattice relative to particles of
another sublattice; v, is a coefficient that takes on the va-
lue 0 for atoms of the first type and the value 1 for atoms of
the second type. Substitution of (7) in (4) gives the follow-
ing relation between the strain vectors of bonds and the
strain tensors of the medium:

€, =a, E+v,5—1/2a, -xxa, +1/2v a, XV,

Ky =2, K+V Y. ®)

On the macroscale, it is as a rule sufficient to use mo-
mentless description of deformation of a medium, and there-
fore we turn to the transition to momentless theory. For this
purpose, we restrict our consideration to deformation in
which the first strain tensor remains symmetric. Then,
using (6), we obtain

=€ (Vu)' +Ex@=0 o @=1/2Vxu 9)

Geometrically the given relation means that all particles
rotate together with the medium. For the second strain ten-
sor, we obtain

x=V@=1/2VVxu, (10)
and hence for homogeneous deformation this tensor identi-
cally vanishes. We also assume that the angular residual y
vanishes as well. Then, formulae (2), (3), (8) give

Wzl/(ZVO)Zeoc'Aoc'eow €, =2, €+V.G, (11)

o

from which it follows that
W=1/2e-*C*-e+e--3C-¢+1/2¢-*C- g, (12)
where

it =1/V0§0;(aaAaaa)S,
C=1/1 B ve(Aa,)’, (13)

2C=1/V, 3TV A,
o

! Homogeneous deformation is understood as deformation in which the
displacements and rotations are affine functions of coordinates.
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Here symmetrization is over those vectors by which the
symmetric tensor € is multiplied in (12). The residual is
found from the equilibrium conditions of material at speci-
fied €:

oW /dg=0=
=¢=-¢-C-C'==-2(C"-C"¢, (14)
where
def
=1y, %va(Aaaa)S, (15)

with symmetrization over the two right coefficients. Sub-
stitution of the resultant expression for § in formula (12)
gives

def -
w=1/2¢e-*C-¢, *C=*C*=3c2c!3CT.  (16)

Thus, we have the stiffness tensor expression of macro-
scopic momentless theory of elasticity.

Let us consider that the stiffness tensors of force inter-
action between atoms are transversely isotropic; for simp-
licity, we restrict ourselves to the interaction with atoms of
the first coordination sphere. Then, the stiffness tensors of
bonds can be written in the form:

A,=cn,n, +cp(E-nyn,),

o A oo D oo (17)
where ¢, and ¢, are the longitudinal and transverse stiff-
nesses of bonds. Substitution of this expression in (13) gives

n, =1/aa,, a=a,]|,

2

4 a S

C =72((CA —cpngnyn n, +cpn Eng ),
0 o

3e=L(c,~cp)Y v n n,n,, (18)
" o

1
2C=—YV,((cs—cpmn, +cpE).
VO o

Here we take Y v,n, =0.

Next, for sir?lplicity, we restrict the consideration to crys-
tal lattices for which v, =1,1.e., the first coordination sphere
holds only atoms of the second type. Besides the tensor
>, 0,0, is assumed isotropic. Both these assumptions are
valid for the diamond lattice which is considered below.
The assumption made allow us to use the identities

Yn,n, = %E = >n,En = %ekenenek, (19)
o o

where M is a coordination number; d is the space dimen-
sion; e, is the orthonormal basis; hereinafter, summation
is over repeated Latin indices from 1 to d. Then, formulae
(18) take the form:

2
* M
4C =2 ((CA _CD)Znocnocnocnoc + CDJZBJ’ (20)
Vo o 2d

3 a
C=—I(cy _CD)Znocnocnoc >
VO o

21

5 M
C=—-/(c,+dcp)E,
Vod(CA i¢p)

where
def

d, =d-1. (22)
Notice that the above assumptions fail to hold, e.g., for a
hexagonal close-packed lattice (hep), and complete formu-
lae (18), rather than formulae (20), (21), should be used for
it.

Let us write expression (16) for the resultant stiffness
tensor *C in the form:

def
J23 =€,€,€,¢; + €:€,€:€>

de 4 ’ de 3

Aol ouL/ ol od~A oREY il ob) (23)
where the tensor *C* is determined by formula (20), and
for the correction stiffness tensor *C’, using (21), we ob-
tain

2 2
40 ad (cg—cp)
C=———%">n_n,n,-) Nghpng. 24

VOMcA+dch§OLOLOL%ﬁﬁﬁ @)

3. Diamond lattice

The crystal lattice of diamond is a complex diatomic
lattice, i.e., it contains atoms of two types differing in geo-
metric arrangement of atoms surrounding them. The pack-
ing density of the diamond lattice is very low, being a mere
46 % of the fcc lattice density, while the hardness of dia-
mond crystals surpasses the hardness of all known mine-
rals. Besides diamond, a similar lattice is characteristic of
other group IV elements: silicon, germanium and o-tin.
However, with an increase in atomic number, the covalent
interaction is weakened with the result that tin can exist as
well in metallic modification with characteristic close pack-
ing of atoms, and the next group IV element — lead — is
found only in the form of close-packed metal.

Diamond is stable at high pressures and is metastable,
though capable of exiting for long, under normal condi-
tions. When heated, diamond transforms into graphite (the
transition temperature for synthetic micropowders is 450—
500 °C; for crystals of size 0.6—1 mm, this temperature in-
creases to 600—700 °C and depends on the structure per-
fection, amount and character of impurities).

An element of the diamond lattice is shown in Fig. 1. It
is seen that the crystal has cubic symmetry. The atoms de-
picted in the figure are positioned at the cube corners, at
the centre of its faces (atoms 1, 5, 7), and at the centers of
four non-adjacent cube octants (atoms 2, 4, 6, 8). The lat-
tice can be obtained from a body-centered cubic lattice (bcc)
by removal of each second atom from the first coordination
sphere such that the rest of atoms lie at tetrahedron verti-
ces. Each atom is at the centre of the tetrahedron whose
vertices are four nearest atoms; the angle between covalent
bonds is 109°28".

The diamond lattice is three-dimensional; the coordi-
nation number for it is determined as

M=d+1,d=3, (25)
and this allows writing formulae (20), (24) in the form:
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Fig. 1. Element of the diamond lattice

def 4

ic=ter -, (26)

&l d+1
4 ((CA CD)Znozncxnoznoz t— 2d CDJZBJ’
0

2 4+ d+l
o= d_a (cs=cp) Y ngng - Y ngngng.
d+1V0 CA+dch(ll ﬁ:l
Let us calculate the product
d+1 d+1

Y nngn, - Y nghgng =
o= B=1

d+l1

= }ﬁ: (n,-mg)n,n,ngng. 27
ao,pB=1

Using the condition Y, o, =0, itis easy to obtain that

Lo=8,
fafip = {—l/d, B,
& n,-ng =1/d((d +1)3,4 ~1),
where 8,4 is the Kronecker symbol. Substitution of for-
mula (28) in (27) gives

d+l1 d+l1
2 n,n,n, - Y ngngng =
p=1

(28)

d +14d+l 14+l d+1
d 2 nn NN, = 2 n,n, 2 nﬁnﬁ (29)
This formula, in view of the relatlon
@l d+1
Y n,n, =7E, (30)
o=l

makes it possible to simplify the formula for the correction
stiffness tensor'

2(d+

sero@ (eamep)® Ynngnn, - Cael) A ED
VO CA + dch d

For lattices whose elastlc properties are isotropic (e.g.,

graphene) or possess cubic symmetry (e.g., diamond), the
formula from [4] is valid:

Yn,n,n,n, =M.eeee, + M (I +J53),
o

J,<EE, (32)

where e, are the unit vectors of the orthonormal basis which
are directed either along the axes of cubic symmetry or ar-
bitrary, as is the case for isotropy; M, and M are the
dimensionless coefficients determined by the formulae

2M 1- 1-n. M n
T4 dn,+2 M ddn+2 (33)
where m, is the anisotropy parameter of the tensor

Yn,n n,n,, and is coincident with the anisotropy pa-

rameter of the stiffness tensor of the material in pure force
interaction.

Table 1 presents values of the dimensionless parameters
for the diamond lattice.

The anisotropy parameter was calculated in the basis
e, (i.e., for direction 100). The volume of an elementary
cell can be estimated using the following general formula
(derived empirically):

d+1
V0=4/%ad, d=1,2,3. (34)

The stiffness tensor moduli C,,, C;, and C,,, and also
the bulk modulus K can be calculated by the formulae:

N B

G = 124 ——(c +2¢p), CIZ_E(CA_CD)’ (35)
3\/§ C4Cp \/g
=g — > K=—c,.
8a c,tcp 12a

As one would expect, the bulk modulus depends only on
the coefficients ¢, (longitudinal stiffness of bond) and does
not depend on the coefficients ¢, (transverse stiffness).

4. Parameters of interatomic bonds

Crystals with cubic symmetry have three independent
elastic moduli for which we can choose C,;, C}, and Cy,.
Let experimental values of these moduli be known. Then,
given any two values and interatomic distance a, we can
use formula (35) to determine the microscale characteris-
tics of interatomic bonds — the coefficients ¢, andc,.
Thus, the momentless macroscale characteristics of mate-
rial allow us to find not only the pure force parameter of
interatomic bond ¢, butalso the coefficient ¢, characte-
rizing the transverse stiffness of interatomic bond and pre-
sent only if moment interaction on the microscale is present.
The value of the third elastic modulus can be used for estima-
tion of the model error.

Table 2 presents experimental values of the elastic mo-
duli of diamond, silicon, germanium and tin. As can be seen

Table 1
Dimensionless parameters for the diamond lattice
Parameters d | M | n, M, M, Voa™
Values 304 | « | =89 | 49 | 16/3/9
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Table 2
Experimental values of elastic moduli for crystals
with diamond lattice (GPa)
Element C Cp, Cyy Source
1076 125 576 [11]
1076 275 519 [12]
c 1079 124 578 [13]
1076 125 577 [14]
1080 125 577 [15]
168 65 80 [16]
159 61 85 [17]
Si 160 57.8 80 [18]
172 63 99 [19]
164 64 80 [20]
130 45 68 [17]
Ge 126 44 67.7 [18]
134 49 69 [20]
Sn 74.5 34.8 34 [18]

in the table, these values differ, at times greatly, from each
other such that we can suggest only the most probable range
of elastic constants.

Using the data of Table 2 for C;,,C;, and the inter-
atomic distance o, formulae (35) give us the longitudinal
and transverse stiffness coefficients of interatomic bonds
in crystals given in Table 3. For example, the data from
[11] and o = 0.154 nm give the following values of stiff-
ness of interatomic bonds in diamond crystals:

¢y =472 N/m, ¢p =338 N/m. (36)

According to the values in (36), the longitudinal to trans-
verse stiffness ratio for bonds of carbon atoms in diamond
crystals is equal to
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The single value ¢j/c, = 0.49 obtained with the use
of the experimental data from [12] is likely to be due to
imperfection of the experiment in which the modulus C),
was found to be 275 GPa, which is suspiciously high. In
silicon and germanium crystals, the interatomic distance is
larger than that in diamond (0.235 and 0.245 nm, respec-
tively) and the covalent bond is weaker. The ratio cj/c,
for them lies between 0.34 and 0.39, which is much lower
than that for diamond. Nevertheless, the transverse stiff-
ness of bond is of significance and is to be taken into ac-
count. The difference in these values for silicon and germa-
nium is within the experiment error. For tin with diamond
lattice, the tendency is preserved: as the interatomic dis-
tance increases (0.281 nm), the effect of the transverse com-
ponent of bond is weakened (¢, /c, = 0.28).

Let us use the obtained longitudinal and transverse stift-
ness coefficients and formulae (35) to determine the value
of the constant C,, (see Table 3). According to Table 3,
experimental data that give no more than a 3% error in de-
termination of C,, are available for each of the elements:
diamond, silicon and germanium, and this fact counts in
favor of the proposed model. However, the experimental
data spread is fairly wide, resulting in a rather large devia-
tion in the values of C,,. Possibly this owes to purely ex-
perimental errors.

Let us consider crystals with sphalerite structure. Spha-
lerite (zinc blende) possesses the geometric lattice of dia-
mond; however, it consists of atoms of two different ma-
tters. The covalent bond is polar, which results from non-
uniform electron density distribution due to differences in
electronegativity of atoms. Let us demonstrate that the pro-
posed procedure can be applied to advantage to this type of
crystals, too. Table 4 presents experimental and calculation
data for crystals with sphalerite structure. The experimen-

cp/cy=0.72. 37) tal values of elastic moduli for boron nitride were taken
Table 3
Calculated values of elastic constants for crystals with diamond lattice
Element ¢y, N/m ¢p, N/'m cpley Claepr GPa C pyear GP2 Deviation, %
C,a=0.154 nm 472 338 0.72 576 586 1.7
578 285 0.49 519 605 17
472 340 0.72 578 587 1.6
472 340 0.72 577 586 1.6
473 340 0.72 577 588 1.9
Si, @ = 0.235 nm 162 55.9 0.35 80 91.4 14
153 53.2 0.35 85 86.6 1.9
150 55.5 0.37 80 88.0 10
162 59.2 0.37 99 94.6 4.6
159 54.3 0.34 80 89.0 11
Ge, a = 0.245 nm 125 48.1 0.39 68 71.9 5.8
121 46.4 0.38 67 69.6 2.9
131 48.1 0.37 69 73.6 6.6
Sb, a = 0.281 nm 934 25.7 0.28 34 384 13
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Table 4

Experimental and calculated values of elastic constants for crystals with sphalerite lattice

Element a,nm | G, GPa| Cp,, GPa | ¢, N/m | ¢, N/m | ¢p/cy| Cyer GPa | Cyyy, GPa Deviation, %
BN 0.157 820.0 190.0 435 228 0.53 480 461 4.0
SiC 0.189 410.5 164.3 323 107 0.33 194 222 14
AlP 0.236 138.0 61.0 142 42.3 0.30 69.0 72.8 5.5
AlSb 0.266 89.4 443 109 27.7 0.25 41.6 44.9 8.1
GaP 0.236 141.1 63.5 146 423 0.29 70.3 73.7 4.8
GaAs 0.245 117.6 52.7 126 36.7 0.29 59.7 61.5 3.2
GaSb 0.264 88.4 40.3 104 29.4 0.28 43.2 46.0 6.5
InP 0.254 102.2 57.6 128 26.2 0.21 46.0 47.4 3.1
InAs 0.262 83.4 45.4 105 23.0 0.22 39.5 39.7 0.4
InSb 0.281 64.7 32.7 84.3 20.9 0.25 30.7 32.2 4.9
ZnS 0.235 97.6 59.0 117 20.9 0.18 45.1 42.6 5.5
ZnSe 0.245 80.3 45.1 96.7 20.0 0.21 39.9 37.4 6.2
ZnTe 0.264 71.1 40.7 92.9 18.5 0.2 31.3 32.6 4.2
CdS 0.253 73.3 50.9 102 13.0 0.13 30.2 26.8 11
CdTe 0.281 53.5 36.8 82.4 10.8 0.13 19.9 19.8 0.5

from [21]; those for the rest of the crystals, from [18]; and
the data for interatomic distances, from [22]. The closest
proximity to the elastic properties of diamond is found for
boron nitride. It is seen from Table 4 that the interatomic
distance in this element is somewhat larger (0.157 nm) and
the transverse to longitudinal stiffness ratio of covalent bond
is somewhat lower (c,,/c,=0.53) compared to those of
diamond. The next element is silicon carbide (¢ =0.189 nm,
¢p/c, =0.33). However, in crystals with sphalerite struc-
ture, the interatomic bond is much more affected by ioniza-
tion and metallization of covalent bond rather than by in-
teratomic distance. As can be seen in Table 4, the ratio
¢p/e, varies from 0.13 to 0.3 while the interatomic dis-
tance varies slightly. For the majority of crystals (8 of 15),
the deviation of the calculated values of C,, from the ex-
perimental values is no greater than 5 %. The maximum
error for SiC is 14 %, which can be explained by a large
experimental error for this crystal.

5. Conclusion

In the work, we proposed the mechanical model of a
diatomic crystal lattice taking account of force and moment
interactions. In the framework of the model, the expres-
sions for the stiffness tensor and the relations between the
macroscale elastic moduli and the microscale parameters
of the longitudinal and transverse stiffnesses of interatomic
bonds were derived. The proposed model was applied to
describe the elastic properties of crystals with diamond and
sphalerite lattices. For these crystals, the longitudinal and
transverse stiffnesses of interatomic bonds were determined.
The model error was estimated. The highest transverse to
longitudinal stiffness ratio of interatomic bonds was found
for diamond, ¢j,/c, =0.72, being indicative of strong co-

valent interaction and significance of the transverse stiff-
ness. In the group of carbon (carbon, silicon, germanium
and tin), the increase in interatomic distance causes weake-
ning of the covalent interaction and a decrease in bond stiff-
ness ratio: ¢j,/c, forsilicon, germanium and tin was about
1/3, which is lower than for carbon and yet it is not infinitisi-
mal. Thus, the transverse stiffness of covalent bond is com-
parable with the longitudinal stiffness and is to be taken
into account in description of covalent crystals.

In crystals with sphalerite structure, the covalent bond
is affected, along with the interatomic distance, by nonuni-
form electron density distribution due to differences in elec-
tronegativity of atoms. Nevertheless the proposed model,
in this case as well, does allow one to estimate the degree
of covalence without introducing any correction terms into
the formulae.

The foregoing suggests that the proposed moment model
offers much universality, making possible a rather accurate
unified description of elastic properties of a wide range of
covalent crystals.

The work was supported by RFBR grant No. 11-01-
00809-a and Program of the Presidium of RAS No. 11.
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