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Abstract—The paper presents results of numerical experiments performed to evaluate the effective 
viscosity of a fluid–proppant mixture, used in hydraulic fracturing. The results, obtained by two 
complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the 
accuracy of standard deviation. They provide an analytical equation for the dependence of effective 
viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture 
propagation.  
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INTRODUCTION  
Hydraulic fracturing technology is used for stimulation of oil and gas production [1]. The 

pioneering results on mathematical modeling of hydraulic fractures were given by Khristianovich and 
Zheltov [2, 3]. Further development of the analytical and numerical methods has been reviewed in 
many papers (e.g. [4–11]). In all the studies and computer codes, used for simulation of the final stage 
of fracturing, the mixture of a fluid and proppant is modeled as a single fluid with the density and 
viscosity depending on proppant concentration (see, e.g. [6]). While there is no problem with defining 
the efficient density, prescribing viscous properties presents a problem uneasy to solve. As noted in 
the paper [6], “Regarding the viscosity of the slurry, this is actually one of the most difficult (and 
critical) aspects of the modeling. Proper formulation of the momentum equation for the problem of a 
suspension of solid particles yields terms that are related to the interaction between particles and 
between particles and the fluid. Accounting for these effects in detail is challenging and most models 
that attempt to describe these interactions are still awaiting experimental verification.”  

A variety of models for dependence of effective viscosity sµ  on the particle concentration c has 
been suggested. The asymptotical behavior of the viscosity at small concentrations is described by 
Einstein formula [12]: 

 )1)(0( Acss += µµ , (1) 

where 2/5=A  in 3D while 2=A  in 2D problems [13]. Equation (1) does not take into account 
hydrodynamic interactions between proppant particles and therefore it is not applicable at high 
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concentrations. More complicated equations have been proposed by Mooney [14], Maron and Pierce 
[15], Krieger and Dougherty [16]:  
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where ∗c  is a critical concentration, commonly used as a fitting parameter; A is the Einstein 
coefficient in (1). The equation (4) is used for simulation of proppant transport in hydraulic fractures, 
for example, in the paper [6]. Note that formulas (2)–(4) suggest qualitatively different dependencies 
of viscosity on proppant concentration. The choice between the models is not straightforward. 
According to the review [17], the majority of the models are derived either analytically or by fitting 
experimental data. Evidently, each of the approaches has its limitations. Analytical models usually 
incorporate assumptions of limited applicability. The challenges of experimental techniques are 
described in the paper [18].  

Consequently, computer simulations may play an important role as an additional tool for the 
investigation. The solution of Navier–Stockes equations for the suspension using conventional 
methods of computational fluid dynamics is extremely time-consuming. Therefore many alternative 
techniques, such as Stokesian dynamics [19], dissipative particle dynamics [20], smoothed particle 
hydrodynamics [21], molecular dynamics [22], lattice Boltzmann [23], etc., are used in literature for 
simulation of suspensions.  

In this paper, the particle dynamics (PD) [24, 25] and smoothed particle hydrodynamics 
(SPH) [26–28] are used. These methods mutually complement each other. The PD is simple and it 
contains a small number of parameters. However in the framework of the PD the viscosity cannot be 
specified explicitly. On the other hand, in the SPH, viscosity is a parameter of the model. At the same 
time, the motion of smoothed particles in some cases is artificial [28]. Therefore the joint use of these 
methods may serve for verifying the results and for better understanding of the suspension behavior. 

The study of numerical simulation of the Poiseuille flow of a suspension in a narrow channel by 
the two complimenting methods has been initiated in the paper [29]. Meanwhile, the results of [29] 
referred to the proppant concentration not exceeding 0.3. It has appeared that considering higher 
concentrations required much greater computational effort because of the need to consider systems 
with notably greater number of degrees of freedom (DOF). In this work, we increased the number of 
DOF to the level providing reliable results up to the concentration 0.6, which is close to the ultimate 
concentration of randomly packed particles. The numerical results obtained serve us to compare the 
equations (2)–(4) and to choose that equation, which complies with the results of numerical 
experiments. We conclude that the Maron–Pierce equation (3) with 77.0=∗

MPc  is the best-fit one.  

1. STATEMENT OF THE PROBLEM. SIMULATION TECHNIQUES  

In this section we briefly summarize the statement of the problem. We study the flow of a 
Newtonian fluid containing proppant particles in a channel of constant width. The channel is 
simulated by a square computational domain with periodic boundary conditions [25] in the direction 
of the flow and rigid walls in the orthogonal direction. The rigid walls are simulated by using two 
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rows of fixed fluid particles. The flow is driven by the constant body force acting along the flow. It is 
shown in the paper [29] that this statement is equivalent to the flow under constant pressure gradient. 
This serves us to simplify modeling by the both methods, because simulation of the body force is 
notably simpler than prescribing pressure gradient.  

The fluid particles initially form a perfect square lattice with nearest neighbor distances equal to 
0a . Proppant particles are either distributed randomly with uniform spatial distribution (for 

volumetric concentration 4.0≤c ) or form square lattice (for 4.0>c ). The volumetric concentration 
c  is defined as: 

 ,2

2

L
NR

c pπ
=  

where L is the size of the computational domain; pN  is the total number of proppant particles; R is 
the radius of a proppant particle. 

The initial velocities correspond to the Poiseuille flow of a single Newtonian fluid. In the case of 
the PD simulations, fluid particles have additional random velocities. The presence of proppant 
changes the rheological properties of the suspension, specifically it increases the effective viscosity. 
This leads to decaying the initial parabolic profile of the in-plane particle velocity until the steady-
state regime is reached. The velocity avv  of the center of mass of all particles inside the computational 
domain is calculated in the course the PD and SPH simulations. In a steady-state regime, avv  is 
identical to average profile velocity. The effective viscosity and the effective density of the 
suspension are defined by equations [26]: 
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where g is the body force; m is the mass of a fluid particle; fN  are the mass and the total number of 
fluid particles; mp is the mass of a proppant particle. The first of Eq. (5) corresponds to the Poiseuille 
flow of a Newtonian fluid under the action of the body force g. In computer simulations the body 
force was renormalized so that gsρ  does not depend on the proppant concentration. In this case the 
only parameter in the first of Eq. (5), depending on the proppant concentration, is the average velocity 

avv . In view of (5), it defines the effective viscosity.  
1.1. Particle Dynamics  

In the framework of the PD method [24, 25], Newtonian equations of motion for interacting 
particles, representing both the fluid and proppant, are solved numerically. In the present paper 
symplectic leap-frog [30] integration scheme is used. The particles interact via the spline potential 
[25]. The force, acting between fluid particles i and j, is calculated as follows: 
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where cuta  is a cut-off radius; a is an equilibrium distance between particles; f is a force constant; 
ab 6/1)7/13(= . Following the approach, proposed in the paper [29], we represent every proppant 

particle as a set of rigidly connected smaller particles shown in Fig. 1.  Thus each proppant particle is 
a rigid body with two translational and one rotational degree of freedom. The distance between the 
nearest particles for the outer circle is equal to the equilibrium distance a between fluid particles. The 
distance between inner and outer circles is also equal to a. These particles interact with fluid particles 
via the forces defined by equation (6).  

Note that the interactions with fluid cause both translation and rotation of proppant particles. Thus 
the equations of motion of a proppant particle i have the form: 

 gFv p

j
k

kjip mm

i
i

+= ∑
Λ∉
Λ∈ ,

,   nFrr ⋅×−=Θ ∑
Λ∉
Λ∈

))((
,

i
i

j
k

kjikipϕ , (7) 

where pm , pΘ  are the mass and the moment of inertia with respect to the center of mass of a 
proppant particle; iϕ  is the angle describing the orientation for the i-th proppant particle; is the unit 
vector orthogonal to the simulation plane; iΛ  is the set of indices for the particles representing the 
proppant particle i; g is the body force driving the flow. In paper [29], it has been shown that this 
approach is computationally more efficient than the straightforward approach, when spheres of 
different size are used for representation of the proppant and fluid particles. 

In the PD method properties of the fluid depend on the number of particles being used. Consider 
two discrete systems, marked by the subscripts 0 and 1, with different number of particles 0N  and 1N  
corresponding to the same square specimen of the fluid. The relation between parameters of these 
discrete systems is found as follows. Assuming that the geometrical size of the system, fluid density, 
and the sound speed mfavs /6=  do not depend on the number of particles, we have: 

 0
1
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where ia , im , if  (i = 0, 1) are the equilibrium distance, the particle mass, and the force constant, 
respectively, for the system i. In the paper [29], it has been stated that when having the relations (8) 
satisfied, the viscosities of the discrete systems are related as: 

0
1

0
1 µµ N

N= . 

 
Fig. 1. Representation of a proppant particle as a set of rigidly connected smaller particles. Three particles in the middle 
are used for visualization of particle orientation. 
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Thus the viscosity of the system decreases with increasing resolution (number of particles). 
However one can avoid the analogous dependence for the Reynolds number. It is straightforward to 
show that the body force should have the form (see the paper [29] for more details): 

 0
1

0
1 gN

Ng = . 

The procedure described allows us to avoid the dependence of the main parameters of the problem 
(size, density, sound speed, and Reynolds number) on the total number of particles in the system. 

The heat generated by shear flow is removed from the system by using the Berendsen thermostat 
[31]. The thermostat is applied to a narrow fluid strip (of 5a width) near the left boundary of the 
computational domain. Then the heated fluid, leaving the domain through its right side, is cooled 
down by the thermostat after crossing the left side of the domain. 

1.2. Smoothed Particle Hydrodynamics  
The second method used in the present paper for simulation of the proppant transport is the 

smoothed particle hydrodynamics [26–28]. Similarly to the PD, in the SPH, a fluid is represented by a 
set of interacting particles. The motion of the smoothed particles is governed by the equations:  
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where ip , iρ  are, respectively, the pressure and the density at the point, where the particle i is 
located; ijS  is a viscous term; w is a weighting function. The weighting function )(rw  has a compact 
support, vanishing for cutar ≥ , cuta  is a smoothing length similar to the cut-off radius used in the 
particle dynamics method. We employ the Lucy weighting function [26]: 
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and the constitutive relations by Monaghan [27] for the pressure and the viscous term: 
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Herein, 0ρ  is the equilibrium fluid density; B , α , γ, ε  are parameters of the model; a  is a 
characteristic size of the particle; sv  is the speed of sound. In the paper [27], it has been shown that 
the equation of state for the pressure in the form (9) guarantees low compressibility of the fluid. In 
contrast to the PD, where viscosity arises naturally as a result of stochastic motion, in the SPH, the 
viscosity is introduced explicitly as the key parameter of the model. Additionally the following purely 
repulsive core potential is used for preventing the formation of artificial structures in the fluid [28]: 
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where corea  is a cut-off radius for the core potential. Interactions between proppant particles, as well 
as between proppant and fluid particles, are described by (6). For proppant–proppant interactions the 
forces are truncated at ar =  hence the interactions are purely repulsive. The motion of proppant 
particles is governed by equations (7). 
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Fig. 2. The distribution of fluid and proppant particles for c = 0.3: (a) particle dynamics; (b) smoothed particle 
hydrodynamics.  

Consider the creation of an initial configuration. The fluid described by the equation of state (9) is 
nearly incompressible. Therefore the computational domain should be completely filled by the 
particles. Otherwise the system would contain artificial voids, similar to gas bubbles. In the present 
paper, the following equilibration procedure is used. Proppant particles are set as described above. 
The remaining space is filled by fluid particles forming perfect square lattice. Evidently in this case 
some voids are formed around proppant particles. In order to remove the voids, the system is 
compressed by multiplying equilibrium density 0ρ  by 0.8. After that, the density is slowly increased 
until the pressure in the system reaches the value of 0.01K, where K is the bulk modulus of the fluid. 
In the course of this procedure the fluid and proppant particles move in accordance with the  
equations of motion described above. The resulting distribution of particles after equilibration is 
shown in Fig. 2b. 

One can see that the computational domain is completely filled by the particles and no significant 
artifacts are present. After the equilibration, the particle velocities are set in accordance with parabolic 
velocity profile corresponding to the Poiseuille flow. 

2. CHOICE OF MODEL PARAMETERS 
The main dimensionless parameters influencing relative viscosity of the suspension are the 

Reynolds number Re, the ratio of the proppant diameter to the channel width, and the ratio of the 
proppant density to the fluid density. We calibrate the model so that the given parameters correspond 
to the flow of the proppant-fluid mixture in hydraulic fracture. The most widespread size of proppant 
particles 20/40 mesh (0.4–0.8 mm). The opening of the crack is of 10 mm order. To estimate the 
typical Reynolds number for hydraulic fracturing we assume that the fracturing fluid is water with the 
density and dynamic viscosity at normal conditions being 1000 kg/m3 and 0.0009 Pa·s, respectively. 
The characteristic velocity of the flow is 0.01 m/s. Therefore the typical Reynolds number is of order 
of 1. Note that this number should not be fitted exactly in computer simulations. The only 
requirement for the simulation is that the flow is laminar. Therefore an order higher Reynolds 
numbers may be used to speed up the simulations. We employ the following values of parameters 
used in the framework of the both methods: 

 20
1=L

R ,   2=
f

p

ρ
ρ

,   30Re ≈ ,   45.2=sv ,   09.0=m ,   3.0=a ,   3.0=f , 

where L is the size of the computational domain; R is the radius of a proppant particle; fρ , pρ  are 
the fluid and proppant densities, respectively; sv  is the sound speed. The mass of a fluid particle, the 
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equilibrium distance and the interaction constant are 09.0=m , 3.0=a , 3.0=f  for 3.0≤c  and 
04.0=m , 2.0=a , 2.0=f  for 3.0>c . 

The specific values of the parameters used in the PD simulations are: 

 125.0=fa
T ,   1.2=a

acut ,   01.0=∆
∗t
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v ,   51058.2 −⋅=f
mg , 

where T temperature (kinetic energy); t∆  is the time step; fmat 6/2π=∗ ; 0a  is the initial distance 
between fluid particles; 0v  is the amplitude of initial random velocities of fluid particles.  

In the SPH simulations, the parameters are: 
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The simulations have been carried out at the Department “Theoretical Mechanics” of Saint 
Petersburg State Polytechnical University by using the supercomputer KS-EVM-1TF. It has 144 cores 
and peak performance of 1 Tflops. The approximate number of particles and the number of time steps 
used in simulations are:  
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For each proppant concentration five problems with different initial conditions are solved by two 
methods. One core per a problem is used. The numerical results presented below correspond to 130 
simulations and approximately two weeks work of the supercomputer. 

3. DISCUSSION OF NUMERICAL RESULTS 
The effective viscosity of the suspension, calculated for different proppant concentrations by using 

the particle dynamics and the smoothed particle hydrodynamics, is shown in Fig. 3. The results are 
normalized by the viscosity )0(sµ  of a pure fluid. Every point on the plot is the mean of five 
simulations with different initial proppant distributions. The bars on the plot show the dispersion of 
the results (average value plus/minus standard deviation). The solid line corresponds to the Einstein 
formula (1) in 2D case (A = 2).  

It can be seen that the difference between the results of the PD and the SPH simulations is of order 
of dispersion of the PD results. For proppant concentration higher than 0.2, the obtained values of the 
suspension viscosity are higher than the value predicted by the Einstein formula (1). Therefore at 
these concentrations the hydrodynamic interactions between proppant particles, neglected in the 
Einstein derivation, are significant. In this case, the non-linear equations (2)–(4) are to be used.  

The critical concentration, entering (2)–(4), has been used as a fitting parameter. For it, the 
following values were obtained by applying the least square method: ,99.0=∗

Mc  ,77.0* =MPc  
67.0* =KDc . for equations (2), (3) and (4), respectively. The corresponding curves are also shown in 

figure 3. It can be seen that equations (2) and (3) give better approximation of the numerical results 
than the equation (4). Note now that the critical concentration ,99.0* =Mc  fitting the approximation 
(2), is unrealistic, since the highest concentration in 2D, corresponding to a triangular lattice, is 

/ (2 3) 0.91π ≈ . In contrast, the critical concentration 0.77, obtained for the approximation (3), is 
quite close to the concentration corresponding to random close packing in two dimensions 

02.082.0 ±=RCPc  [32]. 
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Fig. 3. The dependence of relative viscosity on proppant concentration obtained using the PD, the SPH, and 
formulae (1)–(4). 

CONCLUSIONS  

The physical modeling of a Poiseuille-type flow being difficult, it is reasonable to use numerical 
simulations when studying the effective viscosity of a proppant-fluid flow in a hydraulic fracture. The 
reliability of the results can be notably increased by using two complementary methods, such as 
particle dynamics and smoothed particle hydrodynamics.  

It is shown that for parameters typical for a proppant–fluid flow in a hydraulic fracture, the results 
of particle dynamics and smoothed particle hydrodynamics simulations agree to the accuracy of 
standard deviation. This confirms the consistency of the results obtained and their applicability for 
prescribing the effective viscosity when solving problems of hydraulic fractures.. 

It is shown that the dependence of effective viscosity of the suspension on proppant concentration 
is best fitted by Maron-Pierce formula 2

* )/1/()0( ccs
MP
s −= µµ  with the critical concentration 

77.0* =c  (in 2D).  
Further work may include the comparison of the results obtained with those for a Couette-type 

flow commonly employed in laboratory experiments. This will validate to what extent measurements, 
performed with the use of a rotational rheometer, are applicable for prescribing the effective viscosity 
of a slurry moving in hydraulic fracture under pressure gradient.  
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