
A new loss mechanism in graphene nanoresonators due to the synthetic electric fields caused

by inherent out-of-plane membrane corrugations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys. D: Appl. Phys. 45 435102

(http://iopscience.iop.org/0022-3727/45/43/435102)

Download details:

IP Address: 95.55.24.181

The article was downloaded on 16/10/2012 at 16:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3727/45/43
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS

J. Phys. D: Appl. Phys. 45 (2012) 435102 (7pp) doi:10.1088/0022-3727/45/43/435102

A new loss mechanism in graphene
nanoresonators due to the synthetic
electric fields caused by inherent
out-of-plane membrane corrugations
N E Firsova1 and Yu A Firsov2

1 Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St Petersburg
199178, Russia
2 A F Ioffe Physical-Technical Institute, Russian Academy of Sciences, St Petersburg, Russia

E-mail: nef2@mail.ru

Received 4 July 2012, in final form 2 September 2012
Published 6 October 2012
Online at stacks.iop.org/JPhysD/45/435102

Abstract
For the first time the influence of out-of-plane deformations, which always exist in graphene,
on the non-stationary processes is considered for the case of a monolayer graphene
nanoresonator. A new loss mechanism for this device caused by dissipative intra-valley
currents stipulated by synthetic electric fields is studied. These fields are generated by
time-dependent gauge fields arising in a graphene membrane due to its intrinsic out-of-plane
distortions and the influence of the external periodic electromotive force. The corresponding
formula for the quality factor has a quantum mechanical origin and includes quantum
mechanical parameters. This loss mechanism accounts for an essential part (about 40%) of
losses in a graphene nanoresonator and it is specific just for graphene. The ways of
minimization of this kind of dissipation (an increase in the quality factor of the
electromechanical system) are discussed. It is explained why one can enhance the quality
factor by correctly choosing a combination of strains (by strain engineering). In addition, it is
shown that the quality factor can be increased by switching on a magnetic field perpendicular
to the graphene membrane.

1. Introduction

The recent successful preparation of one-atom layer of carbons,
i.e. graphene [1–3], gave rise to the development of two-
dimensional (2D) physics. However, the question whether
a strictly 2D crystal can exist was first raised theoretically
more than 70 years ago by Peierls [4, 5] and Landau [6, 7].
They showed that in the standard harmonic approximation,
the thermal fluctuations should destroy a long-range order,
essentially resulting in a ‘melting’ of the 2D lattice at any
finite temperature. Mermin and Wagner proved that a magnetic
long-range order could not exist in one and two dimensions [8]
and, later, the proof was extended to the crystalline order
in 2D [9]. In fact, all the observed mono-atomic graphene
samples have inherent stable corrugations, i.e. out-of-plane
deformations (ripples, bubbles, wrinkles, etc), see for instance
[10], where it was discovered that ‘. . . .graphene sheets are not

perfectly flat, but exhibit intrinsic microscopic roughening. . . ’
and also ‘. . . the observed corrugations in the third dimension
may shed light on the subtle reasons behind the stability of
2D-crystals’. In [11] it was theoretically shown that these
‘dangerous’ fluctuations can, however, be suppressed by the
anharmonic coupling between bending and stretching modes.

As a result, a 2D membrane can exist, but strong height
thermal fluctuations (about 7 nm) would be present and ripples
spontaneously appear. So, considering a graphene membrane
with distortions, we study not a specific case, but the general
one. Therefore, it is very important to study the influence
of these out-of-plane deformations on physical processes in
graphene. It was shown that these corrugations lead to the
appearance of a pseudo-magnetic field (gauge field) (see, for
instance, [12]). These inevitably existing fields in graphene
have a magnitude of about several teslas.
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However, only in [14] it was pointed out that in graphene
one should also take into account that the so-called synthetic
electric fields, which arise if pseudo-magnetic gauge fields turn
to be time-dependent. Having this idea in mind, the authors
of [14] calculated the damping rate (see (14) in [14]) for flexural
phonons. Comparing it with the Kubo formula for conductivity
(see (13) in [14]), they were able to interpret the dissipation
caused by the synthetic electric fields and the current associated
with them as Joule-type losses.

It is interesting that such fields were artificially created
not long ago in another nontrivial system. It was done in
a rubidium Bose–Einstein condensate (BEC). This field was
produced as a time-dependent one which led to the appearance
of the so-called synthetic electric fields [13]. In [13], the
effective time-dependent vector potential for neutral atoms
was created via the interaction with laser light generating a
synthetic electric field simulating a charged condensed matter
system in the array of neutral atoms.

Unlike the authors of [14] we consider a problem that
enables application to devices. Namely, we investigate below
the influence of ripples on the performance of graphene
nanoresonators. As is well known, these devices have proven
to be very useful in a large number of applications in different
spheres of activities. In the series of new small-sized devices
named nanoelectromechanical systems (NEMS) (see [15, 16])
the nanoresonators seem to be especially prospective.

First, materials such as piezoelectrics, silicon, metallic
nanowires and carbon nanotubes were used for fabrication
of nanoresonators. The best dynamic characteristics may
be achieved as the resonator size and the mass scale down
(which is assumed in the classical linear elastic Bernoulli–
Euler beam theory). The resonance frequency may be
essentially increased, while the quality factor Q will not
become significantly worse (see [17, 18], for instance). This
allows the sensitive detection of many microscopic physical
phenomena and the measurement of parameters such as spin,
force and molecular mass. These possibilities opened way for
new investigations in biology: virus, protein, DNA detection,
the detection of enzymatic activity, etc.

New opportunities arise if we come to materials such
as graphene—the one carbon atom layer. For instance,
recently a new especially precise method has been suggested
for mass detection (with zg sensitivity) based on an NEM
mass spectrometer [19] exploiting the advantage of graphene
membranes.

Different modifications of graphene nanoresonators were
studied, for instance, in [20–22]. It was shown that the
damping rate increases linearly with resonance frequency.
Different kinds of loss mechanisms are discussed in [20–25].
Some of them are common to all experimental setups:
attachment losses, thermoelastic dissipation, etc. The
others depend on the actuation scheme, for instance, the
magnetomotive actuation scheme, capacitive coupling, etc.
The surface-relative losses usually can be modelled by
the distribution of effective two-level systems. All these
possibilities were considered in detail in [24]. The authors
of [24] pointed out that in the dissipation of graphene
nanoresonators the essential part is due to the electrostatically

coupled graphene layer and a doped metallic backgate,
the energy being dissipated by increasing the electron–hole
excitations and due to the interaction of a charge fluctuation
with lower energy flexural phonons. Moreover, the authors
of [26] investigated intrinsic loss mechanisms of monolayer
graphene nanoresonators undergoing flexural oscillations.
They found that spurious edge modes of vibrations, which
arose intrinsically due to the different properties of edge atoms,
were the dominant intrinsic loss mechanism that reduced the
Q-factors. In [27] the authors studied two effects from the free
edges on graphene nanoresonators, which are both responsible
for reducing the quality factors. They are the imaginary edge
vibration effect and the so-called artificial effect. It is shown
that the armchair edges in graphene nanoresonators lead to
higher values of Q-factors than the zigzag edges.

However, as was mentioned above, such approaches do
not take into account very specific properties of 2D systems.
It is well known that in graphene a significant role is played
by gauge pseudo-magnetic fields [12] created due to the
spontaneous generation of large-scale stable distortions of the
2D graphene surface (ripples, wrinkles, etc) responsible for
its high bending rigidity. There exist expectations that these
pseudo-magnetic fields can be used for the creation of new
graphene nanoelectromechanics. Later it was discovered that
these gauge fields might be varied by applying external strains
[28–30] (strain engineering).

Note that in all the papers where graphene nanoresonators
are investigated the authors consider a purely flat 2D model
without taking into account the inevitably existing ripples.
Also a major part of them did not analyse the microphysical
reasons underlying the macrophenomena. In this paper we
investigate the influence of ripples, which leads to a new
dissipation mechanism in graphene nanoresonators. We call
this new mechanism the Joule-type losses and we describe
its quantum origin. We consider the synthetic electric fields,
which inevitably arise during nanoresonator vibrations driven
by an external time-dependent electromotive force. Our
problem essentially differs from the one analysed in [14].
While in [14] the amplitude of vibrations in the long wave
limit tends to zero, in our case of the external time-dependent
electromotive force it is not so. Therefore, formula (14) from
[14] cannot be directly used in our case of the long wave limit
(q ≈ 1/L, L is the characteristic length scale of a membrane).
Nevertheless, the necessary procedures demonstrating that the
physics of damping is of Joule type can be performed in our
case as well. To analyse the Joule-type losses in our problem
we use the analytical formulae for pseudo-vector potential �A
for a monolayer graphene sheet obtained by the authors of [31].

Below we also estimate the resonator intrinsic losses
(quality factor Q) caused by the synthetic electric fields.
We show that the corresponding contribution to 1/Q is very
essential and leads to rather large Joule-type losses in graphene
nanoresonators.

Of course, the role of synthetic electric fields in other
NEMS may also be important.

In the last section of our paper we discuss the methods for
the reduction of Joule-type losses in graphene nanoresonators.
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2. The Model

We consider a graphene nanoresonator (see for instance
figure 1 in [21] or figure 1 in [22]). For a monolayer graphene
membrane described by the equation of surface z = h(x, y),
for any atom the vectors directed to three nearest neighbours
have the form (see for instance [31])

�u1 = a(
√

3/2, 1/2), �u2 = a(−
√

3/2, 1/2),

�u3 = a(0, −1).

Here a = 2.5 Å is the distance between nearest atoms in the
lattice; h = h(x, y) is the distance from a point on a membrane
to its projection (x, y) in the XOY-plane.

The following formulae for the gauge field vector potential
�A were obtained in [31] (see also [32]):

Ax(�r) + iAy(�r) = −
∑

j

δtj (�r)ei�uj
�K

= −εππ

2

∑
j

[(�uj · ∇)∇h]2ei�uj
�K, (1)

Ax = − 1
2A0[(hxx)

2 − (hyy)
2]a2,

Ay = A0[hxy(hxx + hyy)]a
2, (2)

A0 = 3

4
· εππ

e
· c

VF
. (3)

Here VF is the Fermi velocity, the energy εππ characterizes
the strength of valence bonds, εππ = 2.89 eV �K =
a−1(4π/3

√
3, 0) is the Dirac point position, tj is the exchange

integral with the j th nearest neighbour, j = 1, 2, 3 (we
consider the tight binding approximation), and A0 has the
same dimension as the vector potential. The products of the
expressions in square brackets in the formulae for Ax , Ay in (2)
by a2 are dimensionless, i.e. they are numerical coefficients,
their magnitudes being dependent on the deflection depth of
the graphene membrane (we take into consideration large-scale
deformations such as ripples, wrinkles, etc) and also on the
lattice constant value for the current moment of time. Note
that in [33, 34] (see also [12]) a different formula for pseudo-
magnetic vector potential was considered. The difference
between these two formulae is discussed in [12, 32].

When alternating electromotive field directed along the
OZ-axis is switched on, the vectors �uj should get the time-
dependent variation ��uj (t), which is proportional to E0 sin ωt ,
i.e. we have in the linear approximation

a(t) = a0 + �a(t), (4)

where a0 = 2.5 Å is the initial value of the parameter a at
t = 0 and

�a(t) = η1E0 sin ωt = a00 sin ωt. (5)

Here the coefficient η1 has dimensionality (cm2 V−1).
Similarly we assume

h(x, y, t) = h0(x, y) + �h(t), (6)

�h(t) = η2E0 sin ωt · cos
(πx

2L

)
= h00 sin ωt · cos

(πx

2L

)
,

(7)

where z = h0(x, y) is the equation of the initial membrane
surface form and η2 has the same dimensionality as η1. Both
of them describe an interaction with actuating field on the
microscopic level. The coefficients η1, η2 may, generally
speaking, depend on x, y, but they do not essentially influence
the main results of our paper. The last factor in (7) is connected
with the clumping of the opposite membrane edges by x = ±L

(doubly clumped).
Note that, as is shown in [21], the linear approximation

is reasonable if the deflection amplitude of the graphene
nanoresonator vibrations does not exceed 1.1 nm. As we
assume in our calculations below, it equals 1 nm really.
Therefore, our assumption about linearity is quite reasonable.
The nonlinear problem was studied in a number of works
(see [35] and references therein) as well. However, we restrict
ourselves here to the linear case.

In the presence of the external actuating periodic electric
field E0 sin ωt the gauge field vector potential �A will depend on
time, i.e. in the monolayer graphene membrane the so-called
synthetic electric field arises:

�Esyn = −c−1 �At . (8)

Let ω ≈ ωres, where ωres is the eigenfrequency of our
nanoresonator. Then substituting (2)–(7) into (8) we find

( �Esyn)x = −c−1( �Ax)t

= A0

c
· {[(h2

xx − h2
yy)(�a)t + ahxx(�h)xxt ]a}, (9)

( �Esyn)y = −c−1( �Ay)t

= −A0

c
· {hxy[2(hxx + hyy)(�a)t + a(�h)xxt ]a}.

(10)

We can write formulae (9) and (10) in the form

( �Esyn)x = E0(ω)h00Ix cos ωt,

( �Esyn)y = E0(ω)h00Iy cos ωt, (11)

where h00 = (E0η2) is the resonator oscillation amplitude
(deflection) and

Ix =
{[(

η1

η2

)
(h2

xx − h2
yy) − ahxx

( π

2L

)2
cos

(πx

2L

)]
a

}
,

(12)

Iy =
{
hxy

[
2

(
η1

η2

)
(hxx + hyy) − a

( π

2L

)2
cos

(πx

2L

)]
a

}
,

(13)

E0(ω) = 3

4
· εππ

e
· ω

VF
. (14)

It is worth noting that the dimensionless quantities Ix ,
Iy do not turn to zero even by zero deflection because of
the presence of deformations such as ripples and wrinkles in
graphene. It follows from (11)–(14) that after time averaging
we have

( �Esyn)
2 = ( �Esyn)

2
x + ( �Esyn)

2
y = (E0(ω))2h2

00(I
2
x + I 2

y )/2.

(15)
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Note that our problem differs very much from the one
considered in [14]. In particular, in [14], where the damping
rate of flexural phonons due to the Joule-type losses is
calculated, their vibrational amplitude tends to zero in the
long wave limit. However, in our case the amplitude of the
membrane vibration does not tend to zero because of the
external electromotive force. Nevertheless, the corresponding
procedure can be carried out in our case as well. As was
explained, the dissipation mechanism in a monolayer graphene
resonator driven by a time-dependent electromotive force may
be considered as Joule-type losses (like the problem of finding
flexural phonon damping rate in [14]). So we can write in our
problem the Joule-type losses �εJ for the period T = 2π/ω

in the form

�εJ ≈ 2π( �Esyn)
2σ

LxLy

ω
, (16)

where Lx , Ly are membrane sizes and σ is the 2D conductivity
(for more details see below). From (15) and (16) we obtain

�εJ ≈ π(E0(ω))2h2
00(I

2
x + I 2

y )σ
LxLy

ω
. (17)

Note that in (16) and (17) we took into consideration the
contribution from only one Dirac cone K (from only one valley,
i.e. from only one sublattice). We discuss the correction
connected with the role of another valley K∗ in summary and
conclusions.

From formulae (14) and (17), we see that the damping
rate linearly depends on frequency. It is interesting that
in nanoresonators, on the basis of carbon nanotubes, the
dissipation mechanism connected with electron tunnelling
through a vibrating nanotube also causes the damping rate to
linearly depend on frequency [25].

The general losses of graphene nanoresonators include
parts of different nature:

Q−1 = Q−1
0 + Q−1

J . (18)

Here Q−1
0 is connected to the dissipation mechanisms studied

earlier by the other authors (see for instance [20–25]), and Q−1
J

is connected to the mechanism considered and analysed for the
first time in this paper.

We introduce a quality factor QJ connected to the Joule-
type losses as follows:

Q−1
J = �εJ

εtotal
. (19)

Here �εJ is found from (17), and the total energy is defined
as follows:

εtotal = N · mat · ω2 · h2
00, N = LxLy/(a

23
√

3/2),

where N is the number of atoms in the graphene membrane,
mat is the atom mass and h00 is the oscillation amplitude of the
membrane. So we obtain

Q−1
J = π

3
√

3

2
· (E0(ω))2 · σ [a2(I 2

x + I 2
y )]

ω3mat
. (20)

Note that using equation (13) for E0(ω) and the general
formula of the form σ ∼= e2

h
εFτ
h

∼= e2

h
kFl for conductivity, we

see that the quality factor (20) does not depend on the electron
charge e. It is connected to the fact that the synthetic fields are
chargeless (div �Esyn = div �At = 0). The fact that there is no
electric charge associated with the ‘electric’ and ‘magnetic’
fields created by structural deformations was mentioned in
[32]. We see that their ‘structural electrodynamics’ generated
by external time-dependent activating forces is also chargeless.

Note also that our formula (20) for the Joule-type loss
quality factor contains the Planck constant h and the energy
εππ characterizing the strength of the valence bonds. So
the considered loss mechanism due to the intrinsic synthetic
fields has a quantum origin. In addition, it was shown
in [14] (see formula (45) and a discussion thereabout) that
the 2D conductivity σ does not (or weakly) depend on the
activating field frequency in graphene. But for estimating the
approximate value of the Joule-type losses in the next section
we shall take the measured value of σ using experimental
data [37].

Note that in experimental work [26] the authors wrote
that ‘it was determined that the intrinsic loss mechanism in
graphene can nearly be eliminated through applied tensile
mechanical strain’. As the applied tensile mechanical strain
decreases the values Ix , Iy it is clear from our formula (20)
that the quality factor should increase. So the loss mechanism
considered in our paper explains these experimental results.

3. The Joule-type losses estimate and the ways of
their minimization

Let us estimate the value of the Joule-type losses using formula
(20) and compare the calculated value with experimental
data. We consider the graphene nanoresonator with frequency
ωres ≈ 130 MHz investigated in [21]. For our case mat =
12 1.67 × 10−24g and we have mat · ω3 ≈ 42 g s−3.

From formula (14) we obtain

E0(ω) = 3

4
· εππ

e
· ω

VF
≈ 3/4 × 3 × 1.3

3
V cm−1

= 3.9/4 × 1

300
CGSE. (21)

The conductivity for our case was not written in [21] for the
graphene sample mentioned above. So we take it from another
paper [35] where the parameters of the experiment are close to
the ones in [21]. From [35], for the concentration value n =
2.5 × 1011 cm−2 we find in figure 1 that σ ≈ 1.2 × 109 cm s−1

(for a sample of good quality).
Estimate now the factor a2(I 2

x + I 2
y ) in (20). In [21] it is

demonstrated that the membrane oscillation critical amplitude
after which the nonlinearity becomes essential is equal to
1.5 nm. We assume it to be h00 ≈ 1 nm. It is naturally to
think that �a/a ≈ h00/h ≈ 0.1 i.e.

η1/η2 ≈ �a/h00 ≈ (�a/a) · (a/h00) ≈ 2.5 × 10−2.

Let us estimate the first term in the expression for a2(I 2
x +

I 2
y ), using formulae (12) and (13). Taking into consider-

ation that a graphene membrane surface has corrugations
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and assuming for simplicity the deformation height (depth)
and the basis (length, width) to have close sizes we find
a2 · I 2

x ≈ (6.25 × 10−4a4 · (h2
xx)

2 + · · ·) ≈ (6.25/81) × 10−8.
When estimating, we assumed the deformation radius to be
δx ≈ 15 nm, and δh/δx ≈ 2. Other terms in the formula
for a2(I 2

x + I 2
y ) can be estimated similarly. Therefore, we

obtain a2(I 2
x + I 2

y ) ≈ 0.7 × 10−8. Hence, we find from
(20) and (21) the approximate theoretical numerical value for
the Joule-type losses in the sample mentioned above Q−1

J =
�εJ /εtotal ≈ 3 × 10−5. Since the experiment in [21] gives
the result Q ≈ 14 000 we see that the Joule-type losses are
responsible for about 40% of the total losses and our model
gives a reasonable magnitude of the damping rate.

It is interesting that in [22] for the sample with about the
same resonance frequency the authors obtained the quality
factor Q ≈ 100 000. The measured increase in the quality
factor to our point of view was obtained by the authors because
they used tension. From our formula (20) it is clearly seen that
in this case the factor (I 2

x + I 2
y ) decreases, which enhances the

quality factor, i.e. the measured increase in quality factor is in
accordance with our theory.

Now consider the question, how can one minimize the
Joule-type losses Q−1

J ? It is clear that the expressions Ix ,
Iy in (12), (13), and consequently the losses (20) can be
reduced by varying the form of the function h(x, y) with
the help of strains of different kinds. The fact that one
can increase the quality factor by such actions was studied
experimentally. From formula (20) this experimental result is
absolutely understandable.

One can decrease Joule-type losses also by switching
on a magnetic field perpendicular to the graphene membrane
plane. In fact, in [38], figure 4, we see that for temperature
T = 300 K the magnetic fields less than 8 T are not quantizing
(they are classical) and longitudinal resistivity is an increasing
function of field (in [39], figure 3(a), T = 5 K, a nonquantizing
magnetic field is much less and resistivity is again an increasing
function). So, for example for H = 6 T we have ( [38],
figure 4) that the Joule losses Q−1

J are about six times less. We
saw above that the percentage of these losses is about 40%.
Consequently, the quality factor would be one and a half times
more if the magnetic field H = 6 T were switched on.

Since the graphene membrane surface has corrugations
external magnetic field components parallel to the vibrating
membrane can arise. These components play the role of
magnetomotive force. Hence, as is shown in [40, 41], we can
obtain an extra damping and the increase in Q may be less.

Note that the formulae obtained using the Boltzmann
equation stops to be correct when a quantization in magnetic
field of Landau-type starts. Nevertheless, the tendency of
the losses decreasing remains valid though the form of the
dependence may be different. The experimental investigation
of the dependence Q(H⊥) appeared just now (see [42],
figure 3(c)) for the temperature T = 5 K (i.e. the fields about
6 T are quantizing). However, for the magnetic field 6 T they
measured an increase in Q of about 30%. The role of the
synthetic fields was not discussed in [42].

4. Summary and conclusions

In this paper, for the first time, the influence of the
inevitably existing out-of-plane deformations on the graphene
nanoresonator quality factor was taken into account. As a
result, a new quantum dissipation mechanism for graphene
nanoresonators, i.e. ‘Joule-type’ losses caused by synthetic
electric fields was considered. For the linear case (i.e.
electromotive alternating force is rather weak and temperature
is not very low) the formulae for Joule-type losses were
obtained. However, though a graphene lattice consists of two
sublattices in formula (20) for quality factor derivation we
took into consideration the contribution from only one valley
K (one sublattice). Note that in the ideal case, i.e. if there
is time-reversal symmetry, [36], the gauge fields in K and
K∗ have opposite directions and equal magnitudes, and the
two valley currents compensate for each other. However, this
question was analysed in [14], where it was shown that the two
corresponding valley currents do not compensate for each other
if we take into account an inter-valley Coulomb drag effect
and inter-valley scattering on short-range impurities. So, in
fact additionally we should also have in (20) a dimensionless
factor, which depends on the relaxation times τD and τv , where
τ−1

D is the inter-valley Coulomb drag responsible for the drag
effect and τ−1

v is the inter-valley scattering rate due to the short-
range impurities. But such a theory is beyond the scope of this
paper.

We would like to stress especially that while in majority
of papers dedicated to nanoresonators the phenomenological
approach within the framework of the continuum nonlinear
elastic model (see [43] and last review-like paper [35]) was
used (nonlinear Duffing oscillator), our results for Joule-type
losses are obtained on the basis of microscopic theory taking
into account the specific features of graphene. Although the
membrane vibration is supposed to be classical, the mechanism
of losses in graphene nanoresonator is described within the
framework of quantum solid-state physics. In particular, our
main formula for Joule losses and quality factor includes
quantum mechanical parameters εππ , VF.

Using the formula obtained for the Joule-type losses,
we calculated their magnitudes approximately. This estimate
shows that their contribution to the general dissipation appears
to be about 40%.

The possible methods of reduction of the Joule-type losses
are as follows.

• The application of strain engineering methods to minimize
quantities Ix , Iy and consequently to enhance Q.

• Switching on a magnetic field perpendicular to the
graphene membrane.

Note that just now a paper [44] has appeared where it was stated
that in polycrystalline graphene sheets of multilayer graphene
nanoresonators measured losses proved to be much larger than
that calculated for monolayer graphene. The authors in [44]
mentioned that it could have been due to angle misorientations
of grain boundaries, which generate out-of-plane buckling (see
figure 2 in [44]). These types of corrugations also should cause
artificial gauge fields and lead to the microscopic mechanism
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of losses suggested in our paper. In [44] it was also mentioned
the significant Q-factor increasing with reduction in height
of out-of-plane buckling under a tensile strain. This strain-
engineering method to reduce losses was theoretically found
by us for the first time in [45]. It would also be interesting
to study Q-factor increasing in CVP-grown graphene, when
the external perpendicular magnetic field is switched on, its
magnitude and temperature being varied.

Although the prediction of quality factor increase due to
the magnetic field switch on perpendicular to the membrane
was first published in [45] by us, the experimental investigation
of the dependence of Q on B⊥ is done just now (see figure 3(c)
in [42]) in the quantum limit for the temperature T = 5 K. The
increase in Q in the quantizing magnetic field B⊥ was really
observed and its value was proved to be about 30%. Note that
authors of [42] think that in the standard 2D model of graphene
(without out-of-plane corrugations) this effect may be due to
the magnetization of graphene in the quantum Hall limit which
changes electromechanics.

Note also that the synthetic electric currents we considered
in this paper lead not only to Joule-type losses but cause
dissipation due to their interaction with currents arising on
a gate. Recently, in [46] the current-induced force theory was
developed for the purely flat 2D case. This theory can be
applied for the investigation of many dissipation mechanisms
enumerated in section 1 in a purely 2D case. We hope to
analyse in the next paper the above-mentioned current–current
losses mechanism modifying the methods proposed in [46] to
take into consideration the out-of-plane deformations.

In this paper we found that taking into account the various
corrugations inevitably existing in graphene membranes gives
an essential contribution to the magnitude of the graphene
nanoresonator quality factor in the megahertz and gigahertz
frequency ranges. Obviously, this mechanism should also
influence the nonlinear electromagnetic response of graphene
in the terahertz and optical frequency ranges. In transport
phenomena we should also take it into consideration. So for
exact estimates of losses when constructing different kinds of
devices where graphene is used in the non-stationary regime in
branches such as photonics and optoelectronics, we should also
take into account the generation of synthetic electric fields and
investigate their influence. Some ideas to minimize its negative
action were also outlined.
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