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a b s t r a c t 

One of the major challenges in computational mechanics of materials remains to bridge the 

length-scale and time-scale gaps between the computational and experimental methods to 

study the microstructure of materials. Traditional molecular dynamics is a powerful tool 

at the nanoscale, but it does not allow to simulate such mechanical experiments as AFM 

microscopy dealing with sub-micrometric lengths and microsecond times. Coarse-grained 

(CG) modeling is one of the possible solutions to fill these gaps. CG modeling does not 

consider all atoms in a system, but the “pseudo-atoms” or “grains”, approximating groups 

of these atoms. This allows a significant reduction in the number of considered interactions 

and degrees of freedom and, consequently, saves the computational resources. 

In this work, the unique method for CG modeling named “Hierarchical Deformable and 

Rigid Assemblages” (HiDRA) is proposed. The grains are chosen as assemblages of the 

atoms in the original crystal lattice. The method allows incorporating the grains’ elasticity 

so that the overall strain uniformly distributes in the lattice to avoid the unexpected stress 

concentrations in the bonds between the grains. Grains interact via forces acting to the sur- 

face atoms. Equations of motion for the grains are derived taking the uniform strain of the 

grain as an independent variable. In-house code is developed to perform the simulations 

with elastic grains. As an application, the HiDRA method is used to study the longitudinal 

vibrations and full 3D dynamics of chains of one-dimensional grains. Phonon spectra show 

to what extent large grains can correctly describe wave propagation in molecular chains. 

© 2021 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

The rapid increase in the studies of new nanomaterials and nanostructures is not possible without the accurate and ro- 

bust methods of microstructure properties investigation. A full description of these properties must include both experimen- 

tal tests and computational simulations. Recent tremendous progress in the in situ measurements e.g., with transmission and 

scanning electron microscopes, makes it possible to characterize certain mechanical properties of the materials at nanoscale. 

At the same time, recent developments in spatial and temporal multiscale modeling have increased the size and duration 

of processes that can be simulated using accurate models for atomic interaction dramatically ( Gerberich et al., 2017 ). How-
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Fig. 1. The idea of CG modeling: the atomistic model (left), the atoms combined to super-atoms (middle), the CG model (right) (adopted from 

Chen et al. (2011) ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ever, computational nanomechanics still cannot describe the majority of the physical phenomena needed for engineering 

applications, so the gap in the length-scale and time-scale between the computational and experimental methods remains. 

One of the most potent tools for theoretical investigation of materials at the nanoscale is molecular dynamics (MD) 

( Allen & Tildesley, 1989; Rapaport, 2004 ). In classical MD, atoms are represented as particles interacting with the forces de-

termined from some interatomic potentials or force fields. The trajectories of the atoms are calculated using the numerical 

integration of Newton’s equations of motion. Nowadays, MD simulations use parallel computing, allowing to handle more 

than 10 9 atoms ( Chen, Zimmerman, Krivtsov, & McDowell, 2011 ), amounting to a volume less than a cubic micron, for a

time scale of less than 1 μs . However, the size of the systems considered in computational physics, chemistry and biology, and

required simulation time scales are still too large to be studied in atomistic detail. Therefore, coarse–grained (CG) approaches 

are used to represent the full system as a system with fewer degrees of freedom. In a general sense, classical thermodynam-

ics and continuum mechanics can also be considered as coarse-grained theories, as well as multiple scale modeling methods 

such as quasi-continuum method ( Kochmann & Amelang, 2016; Miller & Tadmor, 2002 ), MAAD ( Abraham, Broughton, Bern-

stein, & Kaxiras, 1998 ), CADD ( Shilkrot, Miller, & Curtin, 2004 ), bridging domain ( Xiao & Belytschko, 2004 ), bridging scale

( Liu et al., 2006 ), atomistic field theory ( Chen & Lee, 2005 ), and many others. The methods mentioned above use the mixed

continuum and atomistic approach to represent the material’s structure. In contrast, we consider CG models in a narrower 

sense, as a reduced representation of the atomistic structure. The number of atoms is lowered by combining them into the

“super–atoms” or “grains” ( Fig. 1 ). The inner structure of the grain is therefore neglected, and all the corresponding degrees 

of freedom are excluded. At the same time, material still does not use any continuum representation, and all simulations are

performed in the frames of the same discrete approach. Simplified CG-representation is widely used to simulate biomolecu- 

lar systems ( Noid, 2013 ) including biomembranes ( Shi, Kong, & Gao, 2008 ), and proteins ( Gautieri, Russo, Vesentini, Redaelli,

& Buehler, 2010; Kmiecik et al., 2016 ); liquid crystals ( Care & Cleaver, 20 05; Wilson, 20 05 ), carbon nanotubes ( Ostanin, Du-

mitric ̆a, Eibl, & Rüde, 2019 ), etc. The relevance of CG calculations was confirmed by the recent Nobel Prize in chemistry given

to Michael Levitt, Martin Karplu, and Arieh Warshel for their pioneering multiscale models for complex chemical systems 

( Levitt & Chothia, 1976; Warshel & Levitt, 1976 ). Being coupled with the finite element method, coarse–grained molecular 

dynamics (CGMD) can be a powerful tool in the mechanics of materials ( Rudd & Broughton, 1998 ). 

The interaction between the grains is determined by the empirical potential. This potential plays the same role in the 

mechanics of discrete systems as the constitutive relations in continuum mechanics; namely, it approximates the system’s 

response to external stimuli. Usually, it depends on the positions of the interacting grains. In such cases grains are consid-

ered as materials points, and the interaction is fully described by forces acting from one grain to the others. But often, the

orientations of the grains must be taken into account . In these cases, the rotational degrees of freedom must be considered

in addition to the translational ones (see Ivanova, 2018 ) and references therein). In general, this corresponds to the consid-

eration of the grain as a rigid body. The interaction between such rigid grains is then determined not only by the forces but

also by the torques. 

We propose a new CG modeling method referred to as “Hierarchical Deformable and Rigid Assemblages” ( HiDRA ). The 

method bases on two principles. Firstly, the grains are chosen as assemblages of the atoms in the original crystal lattice.

Using the periodicity of the crystal lattice, it is possible to increase the size of the grains hierarchically. In this case, the

smaller grains are nested in the bigger ones. The modeled system can then include the small grains and even single atoms

in the regions of interest (defects, crack tips, stress risers) combined with the large grains in other regions providing the

multiscale consideration. Secondly, the grains can be considered either as rigid or solid bodies. These features are discussed 

below. 

The original way to simulate a crystal lattice with grains was proposed recently by Panchenko, Podolskaya, and Berin- 

skii (2020) . The grains were combined from the rigidly connected atoms of the original atomic lattice. In this case, the

simulation time reduction in comparison with the fully atomistic MD should be proportional to (R/a ) 3 , where R is a grain’s

characteristic length and a is an interatomic distance. The method was used to simulate nanoindentation of single-layer 

molybdenum disulfide ( SLMoS 2 ). The interaction of the grains was derived from the forces acting between the surface atoms.

In particular, it was shown that although the rigid grains can be successfully used for a large class of problems, in some

cases, they lead to the wrong description of material properties. Fixing the distances between the atoms makes the lattice 

much stiffer. As a result, it is necessary to re-calibrate the interatomic potentials to comply with the homogenized elastic 

properties of the original crystal lattice. However, this leads to the incorrect prediction of the phonon spectra of the original

lattice. Also, if the lattice is stretched, a rigid grain cannot elongate, so all the effective strain is transferred to the bonds

between the grains. As a result, the bonds reach the critical strain too fast, leading to the material’s premature fracture as
2 
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Fig. 2. Schematic representation of a pair of interacting grains i and j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

it was demonstrated in Panchenko et al. (2020) . Finally, it is not natural to represent a grain with a rigid structure in soft

matter modeling. 

A possible solution is to consider not rigid but solid grains , prone to uniform elastic strain. This idea has several advan-

tages. Firstly, in this case, it is not necessary to re-calibrate the interatomic potential for specific grains. Instead, only the

stiffness of the isotropic grain must be found. Moreover, in this case, the interatomic potential can describe the interaction 

of the grains of different sizes (combining more or fewer atoms) and interaction between the grains and single atoms. It

can be used for the mixed representation of the crystal lattice so that it is modeled with atoms in the areas of stress con-

centration and with the coarse grains in less critical areas. Secondly, in the case of deformable solid grain, the overall strain

uniformly distributes in the lattice, which helps to avoid the unexpected stress concentrations in the bonds between the 

grains. 

Deformation of the particles has been introduced in many ways in the discrete element method (see Rojek, Zubelewicz, 

Madan, & Nosewicz, 2018 and references therein) and the movable cellular automaton method ( Psakhie et al., 2014; Psakhie

et al., 2011 ). In all these papers, deformation of the particles is caused by the contact forces containing central and tangential

constituents. Hence, the strain is caused by the overlapping of the particles, and, in general, consists of the central, tangen-

tial, and volume-dependent contributions. In our case, the solid particles do not overlap , and their deformation is caused 

by multibody interaction between the surface atoms. Also, the approaches mentioned above are based on the quasi-static 

solutions for the strains of the elements that fulfill the equilibrium conditions at every time step. In contrast, the strain

tensor components are considered independent variables in the present work, and they are determined as a solution to the 

coupled dynamical equations of motion. 

The use of deformable grain is a compromise solution combining the speed of the coarse models and the accuracy 

of full-scale models. In continuum mechanics, the use of deformable particles leads to the micromorpic theory, proposed 

by Eringen and Suhubi (1964) , and it is successfully used in nanomechanical problems ( Chen, Lee, & Eskandarian, 2004;

Wang & Lee, 2010 ). However, for discrete coarse-grained modeling, the approach based on the use of elastic particles has

not been developed yet. In this work, we derive the general equations of motion of the deformable solid grains. As a first

implementation, we apply this method to study the dynamics of one-dimensional grains. 

2. General equations for the CG modeling with deformable solid grains 

Suppose that the strain tensor ε i is uniform inside the grain. The current position of an atom α belonging to the grain i

(see Fig. 2 ) is calculated as: 

r α = r i + P i · r iα, 

r iα = ( E + ε i ) · r 0 iα (1) 

where r i is the position vector of the center of mass of the grain i , r iα gives the position of atom α relative to the center of

mass of the grain i , and tensor P i determines the rotation of the grain. The superscript 0 denotes the reference configuration.

The respective velocity is equal to 

˙ r α = 

˙ r i + P i · ( ω i × r iα) + P i r 
0 
iα · · ˙ ε i (2) 

where ω i is the angular velocity, and the kinetic energy of atomic motion for the grain i yields to: 

T i = 

∑ 

α

m α

2 

˙ r α · ˙ r α (3) 

Next, the potential energy is also required: 

U i = 

∑ 

j � = i,α,β

�αβ + 

V 

2 

ε i · ·4 C · ·ε i , (4) 

where 4 C is the stiffness tensor of the grain. The first term is determined by the forces between the grains, whereas the

second one originates from the grains deformation. The notation �αβ is used for the pair interaction potential between 

atom α from grain i and atom β from grain j, however, the subsequent considerations are not restricted by the type of the

potential. 
3 
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We use Lagrange formalism to construct the equations of motion, and vector and tensor analogues of Euler-Lagrange 

equations are written down. The derivatives of the kinetic and potential energies with respect to three generalized coordi- 

nates and their rates, i.e. center of mass position for grain i , its rotation and deformation , are given in the Appendix. 

It should be noted that the force of pair interaction F ij acting to the grain i from the grain j can be found as a sum of

forces acting to the atoms α, belonging to grain i , from the atoms β which belong to grain j (see Fig. 2 ): 

F ij = 

∑ 

α,β

F αβ = 

∑ 

α,β

∂�αβ

∂r αβ
. (5) 

Note that this formula is written in the fixed frame. In what follows, we derive the formulae for torques M ij and stresses,

both internal σ int 
i 

and external σext 
i 

, in the coordinate system associated with grain. Then, the force F αβ has to be written in

this coordinate system: 

F i,αβ = P 

T 
i · F αβ, (6) 

and the pair torque acting to the grain i from the grain j and calculated relative to the center of mass of i is 

M ij = 

∑ 

α,β

r iα × F i,αβ . (7) 

Finally, we obtain three differential equations that fully describe the motion of the lattice with “deformable” grains: 

r̈ i 
∑ 

α

m α = 

∑ 

j � = i 
F i j (8) 

J i · ˙ ω i + 

(
2 ̇

 ε i · ·̂  J i E − ˙ ε i ·̂ J i −̂ J i · ˙ ε i 

)
· ω i + 

˙ ε i · ·
(

˙ ε i ·˜ J i × E 

)
− ε̈ i · ·

(̂
 J T i × E 

)
= 

∑ 

j � = i 
M i j (9) 

1 

2 

(
ε̈ i ·˜ J i + ̃

 J i · ε̈ i 

)
+ 

1 

2 

(
˙ ω i ×̂ J T i −̂ J i × ˙ ω i 

)
+ 

1 

2 

(
ω i × ˙ ε i ·˜ J i −˜ J i · ˙ ε i × ω i 

)
− 1 

2 

[
ω 

2 
i 

(̂
 J i + ̂

 J T i 
)

− ω i ·̂ J T i ω i − ω i ̂
 J i · ω i 

]
−1 

2 

∑ 

α

m α ˙ ε i · ·( ω i × e r ) r 
0 
iα

[
r 0 iαe r + e r r 

0 
iα

]
= V 

(
σ int 

i − σext 
i 

)
(10) 

Here we introduce three auxiliary tensors J i , ̃
 J i and ̂

 J i 

J i = 

∑ 

α

m α

[
( r iα) 

2 E − r iαr iα
]

˜ J i = 

∑ 

α

m αr 0 iαr 0 iα

̂ J i = 

∑ 

α

m αr 0 iαr iα (11) 

Tensor J i is the inertia tensor of the grain i in the current configuration, and for the sake of simplicity we will further refer

to the others as inertia tensors as well. 

3. CG modelling for 3D motion of a chain of atoms 

Let us apply the suggested method to the investigation of the 3D motion of a chain of atoms connected with the elastic

springs. 

As an example suppose that we combine two atoms in a grain, so that α is equal either to 1 or to 2. Moreover, let

m 1 = m 2 = m , so the position vector of the grain’s center of mass r i and the position vectors of atoms (1) obey the following

equalities in the current configuration 

r i = 

1 

2 

( r 1 + r 2 ) , r i 1 = −r i 2 , r 1 − r 2 = 2 P i · r i 1 (12) 

Let the initial chain be aligned along the axis e x . Then 

r 0 1 − r 0 2 = a e x , r 0 i 1 = 

1 

2 

a e x , r i 1 = 

1 

2 

( 1 + ε i ) a e x (13) 

Here ε i is the strain, a is the equilibrium distance between the nearest atoms, and superscript 0 corresponds to the reference

configuration. 

The chain is one-dimensional, and as in (1) deformation is carried out prior to rotation, the strain tensor yields to 

ε = ε e x e x (14) 
i i 

4 
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Then, the Eqs. (1) and (2) are simplified. Respectively, the current positions of atoms are given by 

r 1 = r i + 

1 

2 

( 1 + ε i ) a P i · e x , 

r 2 = r i −
1 

2 

( 1 + ε i ) a P i · e x (15) 

and their velocities are equal to 

˙ r 1 = 

˙ r i + 

1 

2 

a 

[ 
( 1 + ε i ) ω i × E + ˙ ε i E 

] 
· P i · e x , 

˙ r 2 = 

˙ r i −
1 

2 

a 

[ 
( 1 + ε i ) ω i × E + ˙ ε i E 

] 
· P i · e x 

(16) 

The inertia tensors (11) take the form 

J i = 

1 

2 

ma 2 ( 1 + ε i ) 
2 
( E − e x e x ) ˜ J i = 

1 

2 

ma 2 e x e x ̂ J i = 

1 

2 

ma 2 ( 1 + ε i ) e x e x (17) 

Eventually, the equation of motion for the grain’s center of mass (8) remains the same 

2 m ̈r i = 

∑ 

j � = i 
F i j (18) 

The respective external forces are determined by the particular interaction law (5) . 

Assuming that the chain does not revolve around its axis, i.e. 

ω ix = 0 , 

taking into account that 

e x e x · ·( e x e x × E ) ≡ 0 

ω i × E = ω iy ( e x e z − e z e x ) + ω iz ( e y e x − e x e y ) , 

and substituting (12) –(17) into (9) , we obtain 

1 

2 

( 1 + ε i ) 
2 
(

˙ ω iy e y + ˙ ω iz e z 
)

+ ( 1 + ε i ) ̇ ε i 
(
ω iy e y + ω iz e z 

)
= 

1 

ma 2 

∑ 

j � = i 
M ij , (19) 

where the torques are calculated according to (7) . 

Finally, the third equation of motion (10) yields to 

1 

2 

(
ε̈ i + ω 

2 
iy + ω 

2 
iz 

)
e x e x + 

1 

2 

˙ ε i 
[
ω iz ( e y e x + e x e y ) − ω iy ( e x e z + e z e x ) 

]
+ ( 1 + ε i ) 

[
˙ ω iz ( e y e x + e x e y ) − ˙ ω iy ( e x e z + e z e x ) 

]
= 

1 

ma 2 
V 

(
σ int 

i − σext 
i 

)
(20) 

To conclude the derivation, consider the external stress acting to the grain. It can be calculated using formula (58) : 

σext 
i = 

a 

8 V 

∑ 

j � = i,β

[
e x 

(
F i, 1 β − F i, 2 β

)
+ 

(
F i, 1 β − F i, 2 β

)
e x 

]
(21) 

where F i, 1 β and F i, 2 β are the forces acting to the given grain from the atom β (from grain j) and written in the frame

associated with the grain i (6) , and V = a is the volume of the grain, i.e. its length, in the reference configuration. 

For the internal stresses we take the formula for stiffness tensor, again, determined by the particular interaction law. E.g. 

if the bond inside the grain possesses both longitudinal and transverse stiffnesses c L and c T , the stiffness tensor will take

the form Ivanova, Krivtsov, and Morozov (2007) 

4 C = a ( ( c L − c T ) e x e x e x e x + c T e x Ee x ) , (22) 

and 

σ int 
i = 

4 C · ·ε i = aε i c L e x e x . (23) 

Note that for the chain only longitudinal stiffness of the grain is accounted for in the respective equations of motion. Thus,

the shear stresses which originate from strain rate and angular acceleration of the grain match only those of the σext 
i 

. 
5 
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4. Longitudinal vibrations of CG chain. Arbitrary size of the grain 

Let the “initial” grain now contain N atoms of the original chain, so its length is l 0 = (N − 1) a . For the sake of simplicity,

we further restrict ourselves to the analysis of longitudinal vibrations, i.e. pure one-dimensional motion, and only the nearest 

neighbor interaction. 

Effective models Let us try to derive the equations of motion for the 1D CG chain from a different angle. We replace the

polyatomic grain with a diatomic one with just two pseudoatoms located at the edges of the grain. There are two ways to

do that: we can (i) either keep all the inertia characteristics of the grain or (ii) only its moment of inertia and its size. As a

result we obtain two different effective models of the CG chain. 

In both cases the masses of the atoms are redistributed. So in case (i), the masses of the pseudoatoms M and the length

of the new grain l need to be determined to equalize the total mass and the moment of inertia of the initial grain and the

new one: 

M = 

1 

2 

∑ 

α

m α l = 

√ 

2 

M 

∑ 

α

m αr 2 
iα

. (24) 

In the case (ii) we keep the length of the grain and find the masses M that equalize only the moment of inertia: 

l ≡ l 0 , M = 

2 

∑ 

α

m αr 2 iα

l 2 
0 

. (25) 

In pure one-dimensional case the grains are not subject to any rotations, so the equations of motion are determined by

the displacements of the pseudoatoms u i and v i : 

M ̈u i = F (v i − u i ) − F (u i − v i −1 ) M ̈v i = F (u i +1 − v i ) − F (v i − u i ) (26)

Here F (v i − u i ) is the elastic force in a bond connecting the pseudoatom with a displacement v i and the pseudoatom with

a displacement u i . Let us represent their current positions as: 

r 1 = r 0 i −
1 

2 

l + u i = r i −
1 

2 

l(1 + ε i ) r 2 = r 0 i + 

1 

2 

l + v i = r i + 

1 

2 

l(1 + ε i ) (27)

Here ε i is the strain of the grain, r 0 
i 

and r i are the positions of the grain’s center of mass at the reference and actual

configurations, and we use the same index notation as in the previous paragraphs. Equation (27) correspond to the Eq. (1) in

1D case. Substitution to the system (26) gives: 

2 M r̈ i = F (u i +1 − v i ) − F (u i − v i −1 ) = F ext 
i (28) 

Here F ext 
i 

is actually the sum of the external forces acting on the grain i . 

The equation featuring torques degenerates in one-dimensional case, so we pass over to the last equation obtained by 

substraction of the first equation of the system (26) from the second one: 

M l ε̈ i = ( F (u i +1 − v i ) + F (u i − v i −1 ) ) − 2 F (v i − u i ) (29) 

Next, consider the stress tensors (21) and (23) . The volume of the grain is equal to its length, i.e. V = l, and the distance

between the nearest neighbors is l/ 2 . Hence, the only one component of the external stress tensor is equal to 

σ ext = 

1 

2 

( F (u i +1 − v i ) + F (u i − v i −1 ) ) (30) 

At the same time, it can be noticed that the internal stress can be found either using formula (23) , or as a derivative of the

strain energy by ε i = (v i − u i ) /l: 

σ int = F (v i − u i ) (31) 

Using this and multiplying (29) by a, we obtain 

1 

2 

M l 2 ε̈ i = V (σ ext − σ int ) . (32) 

Influence of grain size on the phonon spectra As noted in Chen et al. (2011) a simple equivalent structural representation

averages out the fine details of the molecular structure and high-frequency vibrations of the systems. There is an open 

question, however, to what extent CG models can be used the phonon spectra of the fully atomic systems. Let us consider

the one-dimensional example from the previous section to analyze how the size of the grain affects the wave propagation 

in the material. The one-dimensional crystal is represented as 1D chain of diatomic grains. Equations (28) and (29) can be

rewritten in terms of a center of mass displacement and a strain, taking into account 

F 1 (u i +1 − v i ) = c 1 (r i +1 − r i − a − 1 

2 

l(2 + ε i +1 + ε i )) 

F 1 (u i − v i −1 ) = c 1 (r i − r i −1 − a − 1 

l(2 + ε i + ε i −1 )) F 2 (v i − u i ) = c 2 (lε i ) , c 2 = 

1 

c 1 . 
(33) 
2 2 

6 
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Fig. 3. Phonon spectrum for the monoatomic chain: effective inertia model (blue solid line), effective size model (blue dashed line), HiDRA model (red 

solid line), simulation (black dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here c 2 is chosen so that the effective stiffness of the grain remains the same as a stiffness of the interatomic bond in the

original chain. Now, solutions of the rewritten Eqs. (28) and (29) can be found as the traveling waves 

r n = r 0 exp ( i ( −	t + knL ) ) ε n = ε 0 exp ( i ( −	t + knL ) ) (34) 

where L = l 0 + a is a period of the chain. This allows obtaining the dispersion curves, which are discussed below. 

It can be easily shown that if a diatomic grain contains 2 atoms of the original lattice, then the models coincide and

one obtains the exact solution as expected, because the combination of the acoustic and the optical spectra for the diatomic

elastic grains gives the full acoustic spectrum of the original chain. 

Consider now a diatomic grain which contains three atoms of the original lattice. Figure 3 shows the phonon spec-

tra obtained within four approaches. The vertical axis is normalized to the oscillation frequency of a pair of atoms in a

monoatomic chain 	0 = 

√ 

c 1 
m 

, and a = 

L 

3 
is the respective interatomic distance in the reference configuration. 

The effective inertia model (blue solid line) and the effective size model (blue dashed line) refer, respectively, to case 

(i) matching all the inertia characteristics of the grain and case (ii) keeping its size. Black dots show the results of CG

simulation, for which the details are given in the next section. Note that the simulation results lie exactly in between the

effective models and coincide with the analytical results given by the HiDRA model (red solid line). Let us not, that this

model can be considered as a “mixed” model which incorporates the equation of motion for the grain’s center of mass from

the effective inertia model, whereas the equation for the strain is taken from the effective size model. 

5. Simulation technique 

The main idea of the simulations method is close to the distinct ( Ostanin et al., 2019 ) and discrete ( Cundall &

Strack, 1979 ) element methods and other generalizations of classical molecular dynamics. The grains are simulated as solids 

with given masses and moments of inertia. In what follows, we take the characteristics of these solids and the forces,

torques and stresses as in Sections 2 and 3 . 

Dynamics of the grains The position of the center of mass of specific grain i is determined by the solution of the equation

of motion (8) . Then, generally speaking, the angular acceleration and “strain acceleration” of this grain can be found by solv-

ing system of Eqs. (9) and (10) . Next, we determine the angular velocity and strain rate by integration of the corresponding

accelerations at each time step dt = 0 . 005T 0 using leap–frog algorithm ( Allen & Tildesley, 1989 ). Here T 0 = 

2 π
	0 

is the period

of oscillations of a pair of atoms in a monoatomic chain, and 	0 = 

√ 

c 0 
m 0 

, c 0 and m 0 are the reference parameters. 

As far as the rotational degrees of freedom are concerned, we apply the quaternions formalism ( Altmann, 1986 ). We

introduce a unit vector w i which determines the axis of rotation at current time step. Hence, the rotation around the vector

w i is calculated at each time step d t using quaternions q i as: 

q i ( t + dt ) = q i ( t ) ∗ d q i , (35) 

where 

d q i = cos 

(
ω i dt 

2 

)
+ w i sin 

(
ω i dt 

2 

)
. (36) 
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For small rotations, the latter yields to: 

d q i = 1 − 1 

2 

(
ω i dt 

2 

)2 

+ ω i 

dt 

2 

. (37) 

Additionally, quaternions q i are normalized at every step. 

Hence, the rotation of vectors r iα is calculated as 

P i · r iα = q i ∗ r iα ∗ q 

−1 
i 

. (38) 

and the rotation tensor P i has the following components 

P i ∼

⎛ ⎝ 

q 2 
i, 0 

+ q 2 
i,x 

− q 2 
i,y 

− q 2 
i,z 

2 q i,x q i,y − 2 q i, 0 q i,z 2 q i,x q i,z + 2 q i, 0 q i,y 
2 q i,x q i,y + 2 q i, 0 q i,z q 2 

i, 0 
− q 2 

i,x 
+ q 2 

i,y 
− q 2 

i,z 
2 q i,y q i,z − 2 q i, 0 q i,x 

2 q i,x q i,z − 2 q i, 0 q i,y 2 q i,y q i,z + 2 q i, 0 q i,x q 2 
i, 0 

− q 2 
i,x 

− q 2 
i,y 

+ q 2 
i,z 

⎞ ⎠ . (39) 

Elasticity of the CG chain. Phonon spectrum Without loss of generality we can assume that initial distance between the 

atoms in grain is the same. So for the linear interaction between the atoms, the stiffness of the grain, which is further

required for the calculation of the internal stresses (23) , does not depend on the number of atoms in the grain. 

Passing over to the chain of atoms connected with the elastic springs, we obtain the grain’s longitudinal stiffness 

c L = n 

( 

n ∑ 

i 

1 

c i 

) −1 

, (40) 

where n is the number of interactions in grain, c i is the respective bond’s stiffness. For a monoatomic chain c i ≡ c 0 . 

In order to validate the system dynamics, we use the phonon spectrum. The phonon spectrum of the CG chain is mea-

sured using an approach based on molecular dynamics simulations ( Kong, 2011 ). Namely, we apply the Langevin thermostat 

for grains by generalization of damping term, whereas the random term is calculated as a sum of random forces acting on

the atoms belonging to the grains. The coarse–grained lattice has 2 degrees of freedom in 1D case (1 translational DOF and

1 strain) and 6 degrees of freedom in 3D case (3 translational DOF, 2 rotational DOF, because we exclude the rotation around

the grain’s axis, and 1 strain). Hence, following ( Altmann, 1986 ) we introduce the respective generalized displacements ˜ u i 

and generalized velocities ˜ υi for each grain i . 

The generalized displacements in the reciprocal space are defined as the Fourier transform of displacements in the real 

space 

˜ u (k ) = 

1 √ 

N 

∑ 

i 

˜ u i exp ( −ik · r i ) (41) 

where N is the number of grains, k is a wave vector. The Green’s tensor is calculated as the time average of the tensor

product ̃  u (k ) with its complex conjugate ̃  u 

∗(k ) : 

G (k ) = 〈 ̃  u (k ) ̃  u 

∗(k ) 〉 (42) 

Finally, the dynamical tensor D (k ) is proportional to the inverse of the Green’s tensor: 

D ( k ) ∼ G 

−1 ( k ) (43) 

The missing coefficient is expressed in terms of the averaged generalized velocity square. Let us consider 

˜ ϒmn = 

√ 

〈 ̃  υm ̃

 υn 〉 = 

√ √ √ √ 

〈 ∑ 

i 

˜ υi,m ̃

 υi,n 

〉 

, (44) 

where ˜ υi,m 

and 

˜ υi,n are the components of generalized velocities vector. Their number is equal to the number of the CG 

lattice degrees of freedom. Summation in (44) is carried over the grains i . Let us then introduce the respective tensor ˜ ϒ.

Due to the independence of the generalized coordinates, its non-diagonal components vanish, so formula (44) yields to ˜ ϒmn = 〈 ̃  υm ̃

 υn 〉 δmn , (45) 

where δmn is Kronecker delta. 

Hence, the Eq. (43) takes the form 

D (k ) = 

˜ ϒ ·
[
G 

−1 (k ) 
]

· ˜ ϒ (46) 

The phonon spectrum is obtained by solving the eigenvalues problem for D (k ) for different k . In the simulation the

Green’s tensor is averaged over 1060 T 0 to smooth the results. 

Figure 4 shows the phonon dispersion curves for chains with (a) two and (b) three atoms in a grain subject to 3D motion.

Phonon spectrum for grains (black dots) is compared with that for a monoatomic chain (red lines). The equations of motion
8 
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Fig. 4. Phonon spectrum for the monoatomic chain (3D motion): analytical solution (red lines) and simulation results for CG chain (black dots). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Phonon spectrum for the monoatomic chain (1D motion): analytical solution (red line) and simulation results for CG chain with 2 atoms per grain 

(black dots), 3 atoms per grain (black triangles), 4 atoms per grain (black squares), 5 atoms per grain (black circles), and 6 atoms per grain (black crosses). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the CG chain with two atoms per grain are given in Section 3 . As far as the analytical solution is concerned, the phonon

spectrum is determined on the basis of the respective number of atoms, i.e. two or three. Hence, the lattice constants of the

original chains L match those of CG chains. This leads to the appearance of auxiliary curves shifted relative to each other

by 2 π , because we solve the system of the two/three identical equations for two/three neighboring particles. Due to the

symmetry, dispersion curves that correspond to the motion along e y and e z coincide. In order to ensure the stability of the

system, the chain is pre-stretched by 10%. 

The results of CG modeling for pure one-dimensional case for different grain size are shown in Fig. 5 . It demonstrates

that the diatomic elastic grains representing three and more atoms, allow obtaining only part of the original spectrum. So, 

the larger grains are used, the longer waves should be considered to obtain the correct results. 

As already noted in the introduction, the stiffness of the bonds between the grains in the deformable model does not

change, whereas in the rigid grains it has to be reduced to comply with the overall stiffness of the original lattice. Thus, the

rigid grains approach leads to the incorrect prediction of the phonon spectra of the original lattice, whereas the solid grains

ensure a better match (see Fig. 6 ). 

Complex CG chain To conclude this paper, let us apply the proposed simulation method to complex lattices. Consider an 

originally diatomic chain consisting of alternating atoms and bonds between them shown in Fig. 7 a. There are two ways to

combine the atoms into the grains: we can either take even or odd number of atoms. In the first case the resulting CG chain

will be “monoatomic” (see Fig. 7 b), whereas in the second case it will also be “diatomic” as the original one (see Fig. 7 c).

In what follows we consider a diatomic chain where we double the masses of even atoms and halve the even springs’
9 
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Fig. 6. Phonon spectrum for the monoatomic chain (1D motion): analytical solution (red line), solid grains consisting of three atoms (black dots), ridid 

grains consisting of three atoms (black triangles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. (a) Original chain consisting of alternating masses, (b) “monoatomic” CG chain (c) “diatomic” CG chain. 

Fig. 8. Phonon spectrum for the diatomic chain (1D motion): analytical solution (red lines) and simulation results for “monoatomic” CG chains. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

stiffnesses compared to the monoatomic chain, i.e. for the odd bonds and atoms c i = c 0 , m i = m 0 , and for the even bonds

and atoms c i = 0 . 5 c 0 , m i = 2 m 0 . 

Following a similar procedure, we obtain the phonon spectra for both types of grains. Figure 8 shows the results for

the “monoatomic” CG chain. As in case of an originally monoatomic chain, a CG chain with two atoms per grain provides

the best fit (not shown in the figures), whereas the more atoms are combined in the grains, the longer waves allow to

obtain satisfactory results. The “diatomic” CG chain has the similar features (see Fig. 9 ) as far as the acoustic branches

are concerned, however, the optic branches lie closer to the analytical solution, than those of the “monoatomic” CG chain. 

Dispersion curves are compared with the analytical solution for a diatomic chain determined on basis of the respective 
10 
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Fig. 9. Phonon spectrum for the diatomic chain (1D motion): analytical solution (red lines) and simulation results for “diatomic” CG chains. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

number of atoms, so that the lattice parameters are equal. This leads to the appearance of auxiliary curves shifted relative

to each other by 2 π . Note, that for “diatomic” CG chain the lattice parameter doubles compared to “monoatomic” CG chain. 

6. Concluding remarks 

We have developed the general principles of a novel coarse–grained method referred to as HiDRA, formulated upon 

the representation of atomic structure as a set of rigid and solid grains. The general equations of motion and interaction

between the grains were obtained in closed form. Next, we used these equations for numerical simulations with a particle 

dynamics method close to the discrete (or distinct) element method with non-spherical particles. Still, unlike the methods 

above, which base on the solution of two vector equations of motion, we have three equations with a uniform strain of

the grain as an independent variable. Quaternions formalism was employed to take the rotational degrees of freedom into 

account. 

As a first step, the method was applied to study the atomic chain dynamics in 1D and 3D space. General equations

of motion were reduced to describe a chain consisting of coarse grains. It was shown that the effective elastic properties

obtained using the CG model fully comply with those of the atomistic model. However, the dynamical properties investi- 

gated with the phonon spectra can vary significantly. In the case of the coarse grains, these spectra were obtained with the

original procedure. The dynamics of monoatomic and diatomic chains were investigated with grains containing from 2 to 6 

atoms. For 3-atomic grains, the HiDRA model is perfectly bounded by two effective analytic models. Dispersion curves show 

that the larger the grain size is, the longer are the waves that can be described accurately. 

The chain of one-dimensional grains considered in this paper has various practical applications. It can be used to sim- 

ulate biomolecular chains, polymers, textile fibers, etc. However, the general equations of the presented method can be 

successfully applied for simulations of 2D and 3D objects such as crystal lattices and fiber networks, which is a topic for

future research. 
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Appendix A 

Euler-Lagrange equations of motion used in the present derivation take the form: 

d 

dt 

(
∂ T i 
∂ ˙ q i 

)
− ∂ T i 

∂ q i 
= −∂ U i 

∂ q i 
, 

where q i and ˙ q i denote the generalized coordinates and the respective rates. 

Let us calculate the required derivatives of the kinetic energy (3) and potential energy (4) . 

From formula (2) it follows that the kinetic energy of grain i depends on the center of mass velocity ˙ r i , its angular

velocity ω i , strain ε i , and strain rate ˙ ε i , whereas the dependence on P i vanishes after the respective multiplication. The

potential energy depends only on the all three generalized coordinates. 

First, let us write down the derivative of T i with respect to ˙ r i : 

∂ T i 
∂ ̇ r i 

= 

∑ 

α

m α ˙ r α · ∂ ̇ r α
∂ ̇ r i 

= 

∑ 

α

m α

(
˙ r i + P i · ( ω i × r iα) + P i r 

0 
iα · · ˙ ε i 

)
= 

∑ 

α

m α ˙ r i + P i ·
(

ω i ×
∑ 

α

m αr iα

)
+ P i 

∑ 

α

m αr 0 iα · · ˙ ε i = 

˙ r i 
∑ 

α

m α

(47) 

This trivial result, combined with the derivative of U i with respect to r i , bearing (5) in mind, 

∂U i 

∂r i 
= −

∑ 

j � = i 
F ij (48) 

leads to the first equation (8) 

r̈ i 
∑ 

α

m α = 

∑ 

j � = i 
F i j (49) 

Then, the derivative of T i with respect to ω i is: 

∂ T i 
∂ ω i 

= 

∑ 

α

m α ˙ r α · ∂ ̇ r α
∂ ω i 

= −
∑ 

α

m α ˙ r α · P i · ( r iα × E ) 

= 

∑ 

α

m α

(
r 2 iαE − r iαr iα

)
· ω i − ˙ ε i · ·

(∑ 

α

m αr iαr 0 iα × E 

)
. 

(50) 

Introducing the inertia tensors (11) , we can calculate the next derivative 

d 

dt 

(
∂ T i 
∂ ω i 

)
= 

∑ 

α

m α

[
2 

(
r iα · ˙ ε i · r 0 iα

)
E −

(
˙ ε i · r 0 iα

)
r iα − r iα

(
˙ ε i · r 0 iα

)]
· ω i 

+ 

∑ 

α

m α

(
r 2 iαE − r iαr iα

)
· ˙ ω i − ˙ ε i · ·

(∑ 

α

m α ˙ ε i · r 0 iαr 0 iα × E 

)
− ε̈ i · ·

(̂
 J T i × E 

)
= J i · ˙ ω i + 

(
2 ̇

 ε i · ·̂  J i E − ˙ ε i ·̂ J i −̂ J i · ˙ ε i 

)
· ω i + 

˙ ε i · ·
(

˙ ε i ·˜ J i × E 

)
− ε̈ i · ·

(̂
 J T i × E 

)
(51) 

As far as the potential energy is concerned, the respective derivative takes the form 

∂U i 

∂φi 

= −
∑ 

j � = i 
M ij , (52) 

so the second equation of motion (9) is 

J i · ˙ ω i + 

(
2 ̇

 ε i · ·̂  J i E − ˙ ε i ·̂ J i −̂ J i · ˙ ε i 

)
· ω i + + ̇

 ε i · ·
(

˙ ε i ·˜ J i × E 

)
− ε̈ i · ·

(̂
 J T i × E 

)
= 

∑ 

j � = i 
M i j (53) 

Let us note that for small rotations considered in this work ˙ φi ≡ ω i . 

Finally, let us turn to the derivatives with respect to strain tensor ε i 

∂ T i 
∂ ε i 

= 

1 

2 

∑ 

α

m α
∂ 

∂ ε i 
( ̇ r α · ˙ r α) 

= 

1 

2 

∑ 

α

m α ˙ r α ·
[
P i · ( ω i × e r ) r 

0 
iαe r + P i · ( ω i × e r ) e r r 

0 
iα

]
= 

1 

2 

∑ 

α

m α

[
ω 

2 
i 

(
r 0 iαr iα + r iαr 0 iα

)
− ω i · r iαr 0 iαω i − ω i r 

0 
iαr iα · ω i 

]
+ 

1 

2 

∑ 

α

m α ˙ ε i · ·( ω i × e r ) r 
0 
iα

[
r 0 iαe r + e r r 

0 
iα

]
= 

1 

2 

[
ω 

2 
i 

(̂
 J i + ̂

 J T i 
)

− ω i ·̂ J T i ω i − ω i ̂
 J i · ω i 

]
+ 

1 

2 

∑ 

α

m α ˙ ε i · ·( ω i × e r ) r 
0 
iα

[
r 0 iαe r + e r r 

0 
iα

]
(54) 
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and strain rate tensor ˙ ε i 

∂ T i 
∂ ˙ ε i 

= 

1 

2 

∑ 

α

m α
∂ 

∂ ˙ ε i 
( ̇ r α · ˙ r α) = 

1 

2 

∑ 

α

m α ˙ r α ·
(
P i,r,s e r r 

0 
iαe s + P i r 

0 
iα

)
= 

1 

2 

∑ 

α

m α

[
r 0 iα( ω i × r iα) + ( ω i × r iα) r 0 iα + r 0 iαr 0 iα · ˙ ε i + 

˙ ε i · r 0 iαr 0 iα

]
= 

1 

2 

∑ 

α

m α

[
ω i × r iαr 0 iα − r 0 iαr iα × ω i 

]
+ 

1 

2 

∑ 

α

m α

[
r 0 iαr 0 iα · ˙ ε i + 

˙ ε i · r 0 iαr 0 iα

]
. 

(55) 

Then, 

d 

dt 

(
∂ T i 
∂ ˙ ε i 

)
= 

1 

2 

∑ 

α

m α

[
˙ ω i × r iαr 0 iα − r 0 iαr iα × ˙ ω i 

]
+ 

1 

2 

∑ 

α

m α

[
ω i ×

(
˙ ε i · r 0 iα

)
r 0 iα − r 0 iα

(
˙ ε i · r 0 iα

)
× ω i 

]
+ 

1 

2 

∑ 

α

m α

[
r 0 iαr 0 iα · ε̈ i + ε̈ i · r 0 iαr 0 iα

]
= 

1 

2 

(
˙ ω i ×̂ J T i −̂ J i × ˙ ω i 

)
+ 

1 

2 

(
ω i × ˙ ε i ·˜ J i −˜ J i · ˙ ε i × ω i 

)
+ 

1 

2 

(
ε̈ i ·˜ J i + ̃

 J i · ε̈ i 

)
(56) 

Passing over to the derivative of the potential energy with respect to ε i , we get 

∂U i 

∂ε i 

= 

∑ 

α

∂U i 

∂r α
· ∂r α

∂ε i 

+ V σ int 
i , σ int 

i = 

4 C · ·ε i (57) 

Here σ int 
i 

stands for the internal stress tensor which describes the stress state inside the grain. 

Further simplification, bearing (5) and (6) in mind, leads to 

∂U i 

∂r α
· ∂r α

∂ε i 

= −
∑ 

j � = i,β
F αβ · ∂r α

∂ε i 

= −1 

2 

∑ 

j � = i,β
F i,αβ · P 

T 
i · P i,r,s e r r 

0 
iαe s −

− 1 

2 

∑ 

j � = i,β
F i,αβ · P 

T 
i · P i r 

0 
iα = −1 

2 

∑ 

j � = i,β

[
r 0 iαF i,αβ + F i,αβr 0 iα

]
≡ −V σext 

i , (58) 

where the external stress tensor σext 
i 

is introduced, and F i,αβ is calculated in the frame associated with the grain, so we

obtain the third equation of motion (10) : 

1 

2 

(
ε̈ ] i ·˜ J i + ̃

 J i · ε̈ i 

)
+ 

1 

2 

(
˙ ω i ×̂ J T i −̂ J i × ˙ ω i 

)
+ 

1 

2 

(
ω i × ˙ ε i ·˜ J i −˜ J i · ˙ ε i × ω i 

)
−1 

2 

[
ω 

2 
i 

(̂
 J i + ̂

 J T i 
)

− ω i ·̂ J T i ω i − ω i ̂
 J i · ω i 

]
− 1 

2 

∑ 

α

m α ˙ ε i · ·( ω i × e r ) r 
0 
iα

[
r 0 iαe r + e r r 

0 
iα

]
= V 

(
σ int 

i − σext 
i 

)
(59) 
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