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It seems there is no problem in modern physics for which there are on record as many false starts,
and as many theories which overlook some essential feature, as in the problem of the thermal

conductivity of nonconducting crystals. .
y g ey Rudolf Peierls
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_ Breakdown of Fourier's law In

perfect low-dimensional systems

h =—rkVT
Heat f{ k ﬁperature

Heat conductivity

Review papers:

Heat transport in low-dimensional systems
A. Dhar, Advances in Physics, 57 (5), 2008.

Fourier’s law: A challenge for theorists
Bonetto, Rey-Bellet, Lebowitz, 2000
In Mathematical physics, Imperial college press, London
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in perfect low-dimensional systems
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Properties of a harmonic crystal
in a stationary nonequilibrium state
Rieder, Z., Lebowitz, J.L., Lieb, E.
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crystals
with randomly distributed vacancies
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A.A. Le-Zakharov, A.M. Krivtsov, Doklady Physics, 2008
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experlmental conflrmatlon

Ultrafast Flash Thermal Conductance of Molecular Chains
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reakdown of Fourier's law:
experimental confirmation

PRL 101, 07590€(2008) PHYSICAL REVIEW LETTERS 15 AEUST o8

Breakdown of Fourier’s Law in Nanotube Thermal Conductors

C. W. C]l:lng*l‘l:” D. Okawa,' H. Garcia,' A. MEilelTldill'..l;'J and A. Zeul'>4*
'.{Jc*;mmm’nr of Physics, University of California at Berkeley, California 94720, USA
*Center of Integrated Nanomechanical Svstems, University of California at Berkelev, California 94720, USA
Departments of Mechanical Engineering and Materials Science and Engineering,
*University of California at Berkelev, California 94720, USA
*Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 11 March 2008; revised manuscript received 9 July 2008; published 15 August 2008)

We present experimental evidence that the room temperature thermal conductivity () of individual
multiwalled carbon and boron-nitride nanotubes does not obey Fourier’s empirical law of thermal
conduction. Because of isotopic disorder, x’s of carbon nanotubes and boron-nitride nanotubes show
dii'l“{:rcn@l dependence behaviorODMoreover, for these systems we find that Fourier’s law is violated
even when the phonon mean free path 1s much shorter than the sample length.
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- Questions:

[f Fourier’s law is not valid, what law should be used
instead for 1D crystals to describe heat transfer?

Can it be derived rationally from the equations of
atoms motion?
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A.M. Krivtsov, 2015, ArXiv:1509.02506

mdy heat transfer in 1D harmonic crystal:
derivation of the modified Fourier’s law

Equations of motion:

Uy = af (U, — 2u, +Uy, ) @, =+/C/m,

where uy, is the displacement, m is the particle mass, C is the bond stiffness.

Initial conditions:
uk‘tzo =0, uk‘tzo = G(X)'Ok’

or are independent random variables with zero expectation and unit variance;

o is variance of the initial particle velocity.
The variance is a slowly changing function of the spatial coordinate x = ka,

where a is the initial distance between neighboring particles.
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~Nonlocal temperature

: : : : Szup : : MEQG : : : : :
def

-

B ™ pq
kp — the Boltzmann constant, (...) — averaging opperator

g o0 g ¢ <[5 a5}

Initial problem for nonlocal temperature:

maz(x)gn,
oK.

¢ = wpa — sound speed, 9,, = 1 for n = 0 and ¢,, = 0 otherwise.

.

n

1
- c’(0,_, + 26, +9n+1), o =
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“Kinetic temperature
Initial problem for nonlocal temperature:
" 2 .
. ___ _ = (X)(Sn, A
4 = 2K t=0
Relation between kinetic and nonlocal temperature:
def
T(t, x) = m<u§>/k5 = 6,(t, x).
Initial problem for kinetic temperature:
-1 .
- i Bl .

¢ = woa — sound speed, mo*(x)/(2kp) — initial temperature.
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Kinetic temperature
Initial problem for kinetic temperature:
e - .
T +€T =G T : T‘tzO :TO(X)’ T‘tzo = O’

Initial problem solution:

T(t,%)= j\/tx_if




Heat equations comparison

Classic (Fourier): T BT
. S ﬂ -
Hyperbolic (Maxwell-Cattaneo) T+—T==—T
T T
Modified (Krivtsov) T 1 T = 27"
t

3 — thermal diffusivity, 7 — relaxation time, ¢ — sound speed.



Heat conduction laws comparison

Classic (Fourier): h = —KT"
.1 K,
Hyperbolic (Maxwell-Cattaneo) h+—h = ——"1T
T T
' 1 2/
Modified (Krivtsov) h + " h = —kpc™T

x — thermal conductivity, 7 — relaxation time,

k — Boltzmann’s constant, p — density, ¢ — sound speed.



_ Example 1: sinusoi
disturbance

To(x) = Asinke + B
Solution:
Temperature: T(t,x) = AJy(kct)sin ke + B
Heat flux: h(t, 51’;) — —kpcAJl (/ict) COS R

Jo, J1 — Bessel tfunctions.

k — Boltzmann’s constant, p — density, ¢ — sound speed.
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temperature dlsturbance
T(t,x) = AJy(kct)sinkx + B
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’mle 2: Heat transfer from

hot half-space to cold half-space

To(x) = A for x < 0 and Ty(x) = 0 otherwise.

Solution for: ‘SL“ < ct

* Temperature: T(t,x) = % arccos %
» Heat flux: h(t .Cl?) k’OA \/CQt2 T2

k — Boltzmann’s constant, p — density, ¢ — sound speed.
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T(t,x) = 2 arccos L
m ct
T h—> Ty

—— Numeric solution

— Analytical solution

--- Fourier’s heat conduction -




Conclusion -

Stochastic problems for simple discrete media can be
reduced to deterministic problems for generalized discrete
media.

The presented methods allow solving nonstationary
problems, where notion of thermodynamic equilibrium is
not valid.

Heat transfer in 1D harmonic crystals is described by the
following equations:

.1 . ; : 1 :
1"+ p T=cT", h+ " h=—kpc*T'
Ultrafast heat transfer and negligible thermal resistance

indicate thermal superconductivity in one-dimensional
crystals.
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‘Publications

A.M. Krivtsov. On unsteady heat conduction in a harmonic
crystal. 2015, ArXiv:1509.02506.

A.M. Krivtsov. Energy Oscillations in a One-Dimensional
Crystal. Doklady Physics, 2014, Vol. 59, No. 9, pp. 427-430
(Joknaodbl AkKademuu Hayk. 2014, Tom 458, Ne 3, 279-281.)
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