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Abstract—A one-dimensional harmonic crystal on an elastic substrate is considered as a stochastic system into
which randomness is introduced through initial conditions. The use of the particle velocity and displacement cova-
riances reduces the stochastic problem to a closed deterministic problem for statistical characteristics of particle
pairs. An equation of rapid motion that describes oscillations of potential and kinetic energy components of the
system has been derived and solved. The obtained solutions are used to determine the character and to estimate the
time of decay of the transient process that brings the system to thermodynamic equilibrium.
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1. INTRODUCTION

Nanoscale mechanics of materials has special fea-
tures [ 1, 2] that are largely related to the discreteness of
the atomic structure of matter [3, 4]. Discreteness, among
other things, significantly affects wave processes in the
medium, thus introducing dispersion into the law of pro-
pagation of mechanical waves [5]. A classic example of
such systems is a chain of masses on an elastic substrate
described by a harmonic (linear) interaction [6]. This
chain can serve as a model of carbon nanofibers formed
on the surface of the silicon substrate. Mechanical waves
propagating in such a system obey a dispersion-filtration
law characterized by the lower and upper cutoff frequen-
cies (cutoffs). Similar effects arise in nanostructures, spe-
cifically, in an array of parallel nanosized crystals grown
perpendicular to the substrate. Eremeyev et al. [7, 8]
found that the wave dispersion law in such an array is a
discontinuous function of frequency. Special features of
thermomechanical processes in discrete systems are
negative thermal expansion [9, 10] and the possibility of
structural transitions [11, 12]. The diversity of thermal
phenomena makes a description of heat transfer in dis-
crete media very difficult.

In an ideal single crystal, analytical and computer in-
vestigations show a sufficient disagreement with the
classical thermal conductivity based on the Fourier law

[6, 13, 14]. The disagreement can be reduced or even
completely eliminated with the use of special interaction
laws [15—18] or quite complex structures [19, 20]. How-
ever, recently derived experimental results [21-23] dem-
onstrate that the Fourier conduction law is really broken
in low-dimensional nanostructures. This has awakened
interest in simple lattice models, in particular, in one-di-
mensional harmonic crystals where the mentioned ano-
malies are most pronounced [24-26].

Compared with continuum models of heat transfer by
waves at the nano- and microlevels [27-29], thermal pro-
cesses in discrete media exhibit important distinctions.
Thus, sudden heating initiates high-frequency oscilla-
tions in a discrete system, which are related to the estab-
lishment of an equality of potential and kinetic energy ac-
cording to the virial theorem [4, 30]. This process has
been long observed in computer simulations [31]. Its ana-
lytical description was apparently pioneered by Krivtsov
[32] who used Bessel functions to describe damped oscil-
lations of energy in a one-dimensional harmonic crystal
without a substrate. The solution by Krivtsov [32] is also
interesting regarding its use for the description of heat
transfer in the crystal after the decay of the mentioned
transient process [33—35]. In addition, the Fourier law
was replaced by the heat conduction law for a one-di-
mensional crystal [33, 34].
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The present paper is devoted to an investigation of
high-frequency energy oscillations using the harmonic
model of a one-dimensional crystal on an elastic sub-
strate, which presents a generalization of the model dis-
cussed earlier [32]. The approach proposed in this paper
is based on previous papers [32, 35, 36]. It provides dy-
namic equations for statistical characteristics of the crys-
tal and an analytical description of thermal processes in
the crystal. The crystal is considered to be a stochastic
system, into which randomness is introduced through ini-
tial conditions. Deterministic dynamic equations are de-
duced for the particle velocity and displacement covari-
ance. The solution of these equations yields an accurate
analytical representation and approximate asymptotic
formulae describing the transient process that brings the
system to the state of thermodynamic equilibrium. The
analytical results are confirmed by computer simulation.

2. DYNAMIC EQUATIONS OF A CHAIN

Consider a chain composed of identical masses m
connected by springs of stiffness C,. The chain is on an
elastic substrate of stiffness C;. Then the dynamic equa-
tion of chain particles has the form

i, = (A, = 0 )t (M

Wy d;f\/Co/ma (’31 d;fxlcl/ma

where u, is the displacement of the nth particle, A? is the

second-order difference operator:
def

2
Anun = Uy —21/!” +un+1’ (2)
n is the index that takes integer values. Equation (3) can
be written as

I;in = (’O% (un—l - (2 + e)un TU, )’ (3)
edifwlz/wg =C,/C,.
For analytical constructions, the crystal is rendered infi-
nite. The approximate model of the infinite crystal used
for the numerical analysis is a chain consisting of N >>1
particles subject to the periodicity condition u;_ y = u,.
We consider initial conditions corresponding to an in-
stanteneous thermal disturbance
un|t:O = 0’ an|t:O =0p,> (4)
where p,, is the independent random variables with zero
expectation and unit variance and ¢ is the deviation of
initial velocities. Initial conditions (4) can be interpreted
as an ultrashort laser pulse applied to the crystal [37]. We
assume that initial condition (4) is statistically homoge-
neous in space, i.e. all statistical characteristics p,, are
independent of n.
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3. DETERMINATION OF NONLOCAL ENERGY

For heat transfer problems in a one-dimensional crys-
tal, a covariance matrix was first used by Rieder et al.
[38] who found steady-state heat flow between hot and
cold heat reservoirs. Following [32, 33], we introduce the
nonlocal (covariant) kinetic energy

def 1
Kn = _m<vsvs+n>’ (5)

2
def
where v, =1, is the particle velocity and triangular

brackets stand for the expectation value. Nonlocal poten-
tial energy acquires the form

def 1 1
Hn = 5 CO<8S8S+}1> + ECI <usus+n>’ (6)

def
where €, = u ,, —u, is the bond strain. If conventional

energy is determined by the velocity and strain disper-
sion, then nonlocal energy is defined by covariance' of
the same values for a pair of particles whose position in-
dices differ by n. Since the crystal is in the statistically
homogeneous state, the introduced quantities are inde-
pendent of the position index s but they essentially de-
pend on the correlation index n. At n =0, formulae (5)
and (6) allow for the conventional energy

1 1
I, = 5C0<33> + §C1<”s2>a

1 ™

For computer simulation, the expectation in the covari-
ance calculation can be approximately replaced by aver-
aging over all possible values of s in the crystal.

The use of the energy term for the introduced quanti-

ties is related to the fact that the total nonlocal energy
def

E =K, +I1,

remains unaltered. Let us demonstrate it. Use dynamic
equation (3) to calculate the time derivative of nonlocal
kinetic energy
K, =m(v,0.,,) =(CoAs =C)0,ug,) (8)
The latter equation is deduced with the covariance sym-
metry identity [32]

(Ss+n8s? =S &sen)- 9)
By using the representation (e, )=-A2(uu,,,)
[32], we calculate the derivative of potential energy

Hn = _COAi <Usus+n> + Cl <vsus+n>

= (C, - CoAY v,y =—K,,. (10)

'For centered random variables, the covariance presents an expectation value
of their product.
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From equality (10) it follows that the system conserves
the total energy. Thus, nonlocal energy E, obeys the law
of conservation of energy similar to that of mechanical
energy.

4. DYNAMICS OF NONLOCAL ENERGY

We obtain analytical equations to describe high-fre-
quency oscillations of potential and kinetic energy in a
crystal. Dynamic equation (1) of the chain is used to cal-
culate the second derivative of potential energy

ﬁ}’l = (Cl - COAi)(<UYUY+}’l> + <iiSuS+}’l >)
L T2l -wiADL, (11)
€
where L, = K, —11, is the nonlocal Lagrangian of the

system. Differentiating the Lagrangian twice with re-
spect to time and considering for I1, = -K,, (10), we de-

rive
L, =434, — )L, (12)
or in the explicit form
L, =405(L, —(2+e)L,+L,,). (13)

The resulting equation for L, as with the case of no sub-
strate [32], differs from the dynamic equation of the
chain (3) only by a doubled partial frequency ,,.

5. ANALYTICAL SOLUTION

Initial values of Z, and L, determined by disper-
sions and particle velocity and displacement covariances
at the initial moment are taken as initial conditions for
Eq. (13). According to initial conditions (4), different
particles have independent initial velocities and zero ini-
tial displacements. Then, using the definitions of nonlo-
cal potential and kinetic energies (5), (6) we obtain

Ln|t:O:E8n’ Ln|t:O:O’ (14)

where E = mo® / 2 is the total energy of the chain and 9§,
is the discrete function?.

Thus, the dynamics of energy in the stochastic prob-
lem (3), (4) is determined from the deterministic initial
problem (13), (14). This means that the progress of a ran-
dom process is completely determined by initial condi-
tions (14) while energy oscillations are independent of
the initially selected velocity distribution function.

With initial conditions (14), Eq. (13) is solved using
the discrete Fourier transform [39] to give:

23,=1forn=0and§,=0forn=0.
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/2

2E .
L =— f cos(2y/4sin’p +¢ wyt)cos(2pn)dp. (15)
L

A similar expression was obtained by Gendelman et al.
[40] when studying a sinusoidal thermal disturbance in
the crystal on the substrate. For conventional energy, the
correlation coefficient n is zero. By using the notation

def .
L = L,, from (15) we derive

T
L= EJ.cos(2\/4sin2p +ewyt)dp.
o

After the Lagrangian is found, the kinetic and potential
energies are calculated according to the formulae

K(t)=E1+2L(t), H(t)zEl_—g(t).

Write Lagrangian values (15) for the two extreme cases

€ =0: L=FEJ,(4oy) = £
\J2mwt
€ =co: L =Ecos(2m,?).
Here we use the identity \/E(DO = ;. Inthe first case (¢ =
0), there is no substrate and a solution coincides with the
solution obtained previously [32]. In accordance with
properties of the Bessel function, the Lagrangian de-
scribes damped oscillations with a frequency and ampli-
tude inversely proportional to the square root of time (an
approximate formula is valid for not too short times). In
the second case (€ =<o), particles do not interact and con-
sequently perform undamped oscillations with the same
frequency and phase (since all of them are simulta-
neously excited at #=0). Energies as quadratic functions
of displacements and coordinates oscillate with a
doubled frequency 2wm;, where the frequency w, is de-
termined by the substrate stiffness.

Represent solution (15) in the form convenient for the
asymptotic analysis. To do this, we calculate the Laplace
time transform of the integrand in (15). After reverse
Laplace transformation, integration over p yields

L= Ed—thO(2«/4 +emy(t—1))Jy(2ewyT)dT. (19)
0

(16)

(17)

cos(4w,t —1/4),
(18)

The transformation data are detailed in Appendix Al.
The value /4+€®, in expression (19) is equal to the
upper cutoff frequency while \/E(DO corresponds to the
lower cutoff frequency for the chain on the elastic sub-
strate (3). The calculation of the time derivative ¢ leads to
the expression

% = J, 24+ ewyt) - 24ew,
ijO(zﬂ [4+ ey (t—1))J,(2ew,n)dt.  (20)
0
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6. SOFT SUBSTRATE

At small values €, from formula (20) we obtain the
following asymptotic representation of the Lagrangian as
the sum of two Bessel functions (the asymptotic develop-
ment is given in Appendix A2):

% ~ J, (2[4 +emyt) —%\EJI (ewyt).  (21)

The numerical analysis shows that the formula has a neg-
ligible errorup to e =1 (see Appendix A3). Figure 1 il-
lustrates the solution of (20) and its slow component
JeJ ] (2\/E0)Ot) / 2, on which high-frequency oscillations
Jo(244+ e myt) are superimposed. Both slow and high-
frequency components of oscillations damp according to
properties of the Bessel functions, in proportion to 1/ Ve

From (21) it is easy to derive constraints for the

Lagrangian. For the Bessel function we estimate

1
| Jo(2x)|< ==,

Jnx

where bounding functions can be considered to be enve-
lopes to a high accuracy. Summarizing the constraints for
each of the Bessel functions entering (21), we obtain the

estimate for L(r)
(L ey E
| L(1) < L.(0), L*(t)—[ J\/@

(22)

23
fare 2 2
The bounding functions *LZ,.(¢) are shown by dashed
lines in Fig. 1.

It is easy to show that the following inequality holds
E

2Tt '
According to (24), in the crystal on the elastic substrate a
balance between potential and kinetic energy (damping
of Lagrangian oscillations) is established slower than that
in the free crystal (¢ =0). This agrees well with the fact
that in the extreme case when particles interact with the

L(1)2 L(1) |e=o= (24)

L(t/E

0.8+

0.4\

AY
0.0 ﬂ AAAA'M—I\A—AMA_A;AM_A;A_AE‘A‘-‘_AJ\—A_A AAANA

0 2 4 6 8 ik

Fig. 1. Lagrangian oscillations for the soft substrate (e =
0.1). The solid line shows the slow component of the signal.
The dashed lines show bounding functions (23). The time
scale T, =2m/w,.
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substrate and do not interact with each other (€ =) no
damping occurs (see the second formula in (18)).

It was previously found [32] that in the case of no sub-
strate the time dependence of the Lagrangian is described
by the differential Bessel equation

£+%L'+16(n3L=0. (25)
This equation is evidently satisfied by the Lagrangian
L(t) = EJ,(4mt) derivedin (18)at €= 0. We obtain a
generalization of (25) for a soft elastic substrate. Con-
sider asymptotic representation (21). Combining differ-
ential operators corresponding to Bessel functions of the
zero and first orders, we obtain

(207 +10, + dewir® —1)(167°w] +1)"!

X(£207 +10, +4(4 + €)wit?) L(1) = 0. (26)
The time function (1 6t2w3 +1)7! isintroduced to reduce
the factor that arises due to the noncommutation of these
operators. Resulting differential equation (26) is of the
fourth order with respect to time, which is typical of sys-
tems with two coupled oscillators. In addition, this equa-
tion is transient and reversible, similarly to (25). A solu-
tion of Eq. (26) is function (21) with the initial conditions

1
(=0:L=E, L == Eox,

T P 1)
L=-2FE0;(4+e€), L= EE(DOe .

Note that L|,_,=0 according to initial conditions
(14). Initial conditions (27) set a small nonzero value for
L|,_, - This discrepancy is due to the approximate char-
acter of formula (21). At € =0, Eq. (26) can be partially
integrated, which gives initial equation (25) for L(¢) cor-
responding to the right bracket in (26). Thus, the equation
of Lagrangian oscillations (27) is a generalization of
Eq. (25) for the chain on the soft substrate. At the mo-
ment it is unclear whether it is possible to construct a
similar equation for an arbitrary stiffness of the substrate.

7.HARD SUBSTRATE

From the numerical analysis of the diagram of (20) at
high € it follows that the solution may be approximately
represented as a product of a low-frequency Bessel func-
tion and high-frequency harmonic oscillations. Frequen-
cies are defined by characteristic frequencies of depen-
dence (19)

Q dif(\/m+x@)wo, Q, dif(\/‘* te ey, (28)

where Q;and Q, are the sum and difference of the cut-
off frequencies for the chain on the substrate. From the
analytical and numerical analysis of formula (20), the fol-
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L(H/E
L0

0.51

0.01

t/TO

Fig. 2. Lagrangian oscillations for the hard substrate (e =
24). The solid line shows an envelope, the dashed lines show
bounding functions (30).

lowing asymptotic representation has been empirically
obtained:
L= EJ(Q,t)cos(L,1). (29)
According to formula (29), beats occur in the system: the
envelope curve J(Q,¢) restricts the wave packet filled
with a high-frequency signal cos(Q,7) (Fig. 2). Inaccor-
dance with properties of the Bessel function, the enve-
lope amplitude is attenuated as 1/ Jt. The numerical
analysis shows that formula (29) is asymptotically exact
at high e (see Appendix A3), which however requires
further analytical verification.
Using formula (29) and estimate (22), we obtain con-
strains for the Lagrangian
|L(®)|< L. (D),
2E

E p—
\/taﬂ/z - \/TC( 4+ ¢ —\/E)(Dot

The bounding functions +Z.(¢) are shown by dashed lines
inFig. 2. At e > o0, Q — 2, and Q, — 2033/031 —0
hold to give L — Ecos(2w,?) from approximate for-
mula (29), which coincides with (18) obtained previously
by exact formula (16). At € — oo estimate (23) yields an

(30)

L(1) =

L(t)/E

0.5

0.0

—0.57

0 1 2 3

t/ To
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overestimated result L, — c. The simplest estimation
formula that is valid for arbitrarily large ¢ has the form

£ 31)

JQ,tm/2 ]

8. APPROXIMATION AND NUMERICAL
SOLUTION

L.(¢)=min| E,

Lagrangian oscillations obtained by solving (20) at
different ratios of stiffnesses of the substrate and springs
between particles resemble oscillations in the system
with two degrees of freedom in viscous friction. Fig-
ures 1 and 2 exhibit a typical behavior of such a system,
i.e. frequency aliasing and beating. However, in contrast
to the system in viscous friction, damping is described by
a power law rather than by an exponential curve, i.e. am-
plitudes are inversely proportional to the square root of
time.

Figure 3a plots a solution of (20) at equal stiffnesses
of springs connecting masses with each other and with
the substrate. This case is satisfactorily approximated by
each of approximate formulae (21) and (29). The main
differences are observed at the extrema where both as-
ymptotic representations somewhat underestimate the
exact solution as to amplitude (see Fig. 3a). Thus, the
found approximate solutions provide a good approxima-
tion: solution (21) for C; <C, and solution (29) for
C, = C,, thereby covering all possible ratios of stiff-
nesses.

The analytical results are verified by computer simu-
lation. The system of discrete dynamic equations of the
chain (3) with stochastic initial conditions (4) is solved
numerically by a central difference method with the inte-
gration step 0.001t,,, where 1, = 21/, Initial veloci-
ties are set by a random number generator with a uniform
distribution. Expectation is calculated as the average

L(t)/E

f/TO

Fig. 3. Energy oscillations at equal stiffnesses: € =1 (C,= C,)). I—exact solution (20); 2—asymptotic behavior (21); 3—asymptotic
behavior (29) (a), comparison of the exact solution (solid line) and the solution obtained by computer simulation (circles) (b).
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over the crystal. The chain consists of 20 000 particles to
provide the required accuracy of the numerical solution.
As can be seen graphically, the numerical and analytical
solutions agree on the assumed scale. A similar agree-
ment is obtained for the soft and hard substrates.

9. CONCLUSION

We consider discrete dynamic equations of an infinite
crystal with stochastic initial conditions. The used ap-
proach allows a stochastic problem for particle displace-
ments to be reduced to a closed deterministic problem for
statistical characteristics of particle pairs. It is thus found
that the Lagrangian of the system satisfies the equation of
displacement of a particle in the chain with deterministic
initial conditions. In the problem of an instanteneous
thermal disturbance, the initial condition for this equa-
tion is a displacement of a particle by value E. As the
number of particles is infinite, the chain comes to equilib-
rium in time. Consequently, the Lagrangian vanishes
with time; a transient process ends with the balance be-
tween kinetic and potential energy, which agrees with the
virial theorem. In general, the used approach enables not
only a correct identification of parameters of thermody-
namic equilibrium but also an analytical description of a
nonequilibrium process leading to the mentioned equilib-
rium.

Along with exact integral formulae, approximate as-
ymptotic formulae are developed for the Lagrangian at a
low and high stiffness of the substrate. From properties of
the Bessel function it follows that the amplitude of the
asymptotic representations decreases as 1 Jt, whichis
typical for such systems. A similar law of energy decay
was previously obtained for the chain without the sub-
strate [32]. The asymptotic behavior, but with the sub-
strate, was obtained by Gendelman et al. for a sinusoidal
thermal disturbance (however, at significantly lower fre-
quencies corresponding to slow thermal oscillations)
[40]. In contrast to the previous results [32], [40], the
present solution reveals two oscillation frequencies
Q, > Q,. For the soft substrate (21), they are the doubled
upper and lower cutoff frequencies of the chain on the
elastic substrate

Q, =2mp./4+¢, Q, =2m,e. (32)

For the hard substrate (21), they are the sum and differ-
ence of the upper and lower cutoff frequencies

Q, =w,(J4+e+/e), Q, =w,(\[4+e—-e). (33)

For the soft substrate, the solution presents high-fre-
quency oscillations typical of a free crystal, which are
superimposed on slow oscillations associated with the
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elastic substrate (Fig. 1). The situation is reversed for the
hard substrate: the system demonstrates beats that have
high carrier frequency associated with the elastic sub-
strate and a low frequency envelope determined by prop-
erties of both the crystal and substrate (Fig. 2). At close
stiffness values, the situation is intermediate and can be
well described by approximate solutions derived both at
low and high ratios of stiffnesses (Fig. 3). The con-
structed solutions are used to estimate the time of decay
of the transient process, which is shown to increase with
arise in the substrate stiffness. The transient process ends
with the achievement of the thermodynamic equilibrium
state, in which heat transfer implies a macroscopic de-
scription. For the chain without the substrate, such de-
scription was given elsewhere [33, 34]; with the sub-
strate, it can be similarly developed using the results of
this work.

APPENDIX

Al. Lagrangian Representation Derived
by Convolution

Consider Lagrangian (16)

T
=-£ ) cos(24/4sin® p + e wt)dp. (A1)
Ty
The Laplace time transform yields
A T
LZ_J. 2 2Sdp 22 " (A2)
Ty s” +4ew; +16w;sin” p
After integration, we derive
L= Es fi(s) f5(s), (A3)
where
A def 1
his) = 2 2 ’
s°+4m5(4 +e)
A def 1 (A4)
Sr(s) = B
s +4m;e
The inverse Laplace transform for (A3) gives
d t
L=Ed—t [ fit=D) f5(D)dr. (A5)
0
A substitution of the original functions
J10) =J,(2\4+emyi),
1 0 o (A6)

£ =T, emyt)

into the derived formula provides required formula (19).

A2. Asymptotic Development for the Soft Substrate

Derive asymptotics (21) of the Lagrangian at low e.
The integral convolution in formula (20) in the first ap-
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Er(€)x 1072
1.51
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1.0

0.5 1

0.0
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02 04 06 08 €
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Er(e)x 1072

37 (b)
2_

]_

0 : : : : :

0.0 02 04 06 08 Ik

Fig. A1. Integral error of asymptotic representations against €. The error in formulae (21) (a) and (29) (b).

A(f)x 1072
. (a)
121
8_
4
0 ey
0 1 2 3 t/’l.'o

A(f)x 1072
121

(b)

6 1 2 3 f/TO

Fig. A2. Discrepancy against time at € = 1 for formulae (21) (a) and (29) (b).

proximation of low € can be represented as

T (2
S=[J, (—(T —~ e))Jl(e)de, (A7)
0 €
def def def
0 = 2em,T, T = 2emyl, € = Je. (A8)

It can be shown that the expression J,,((2/e)(T - 0)) in
(A7) can be asymptotically replaced by e3(7—0) at low €,
where d is the Dirac delta-function. Then

T
S =¢[8(T -0)J,(6)d0 = ng(z) = %\/EJI(Z\/E Wyh)-

0 (A9)
A substitution of the derived expression into (20) pro-
vides sought-for formula (21):

% =J,(2\4 +ewyt) - %\/EJI(Z\E wyf). (A10)

A3. Numerical Estimation of the Error of Asymptotic
Formulae

Prior to the estimation of the error of asymptotic ex-
pressions (21) and (29), we calculate the integral error

Er(c) = /ti [ A2(0)dt,
er 0

REILS (t);Lap gl

(Al1)

where L, is the exact Lagrangian value, L, is its ap-
proximate representation (21) or (29), and ¢, is the inter-
val of integration. The calculated dependence of the inte-
gral error on the parameter € is exhibited in Fig. Al. Ac-
cording to the derived diagrams, the error of the appropri-
ate formulae tends to zero at low and high €, which bears
evidence to their asymptotic accuracy. The error of both
formulae is minute up to € = 1. Consequently, a solution
can be described by approximate formula (21) at e < 1
and by approximate formula (29) at € > 1. According to
Fig. A2, the maximum error does not exceed 1.5% for
formula (21) and 3% for formula (29).

In the calculations represented in Fig. A1, we use
t,, =3.57,, i.e. the integration interval is chosen so as to
cover first several periods of oscillations. As shown in
Fig. A2, the error of asymptotic representations decreases
with time, which allows for a relatively small interval of
integration for the approximate estimate.

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education
and Science of the Russian Federation (Goverment Con-
tract 9.2091.2014/K). The authors are grateful to every-
one who took part in the discussion of the work, especi-
ally to E.A. Ivanova, D.A. Indeytsev, V.A. Kuzkin,
N.F. Morozov, and E.A. Tropp.

PHYSICAL MESOMECHANICS Vol.19 No.3 2016



10.

11.

12.

13.

14.

15.

16.

ENERGY OSCILLATIONS IN A ONE-DIMENSIONAL HARMONIC CRYSTAL

REFERENCES

Goldstein, R.V. and Morozov, N.F., Mechanics of Defor-
mation and Fracture of Nanomaterials and Nanotechno-
logies, Phys. Mesomech.,2007,vol. 10, no. 5-6, pp. 235—
246.

Goldstein, R.V. and Morozov, N.F., Fundamental Prob-
lems of Solid Mechanics in High Technologies, Phys. Me-
somech.,2012,vol. 15, no. 3—4, pp. 224-231.

Krivtsov, A.M. and Morozov, N.F., On Mechanical Char-
acteristics of Nanocrystals, Phys. Solid State, 2002,
vol. 44, no. 12, pp. 2260-2262.

Hoover, W.G. and Hoover, C.G., Simulation and Control of
Chaotic Nonequilibrium Systems: Advanced Series in Non-
linear Dynamics: V. 277, Singapore: World Scientific, 2015.
Porubov, A.V. and Berinskii, I.E., Nonlinear Plane Waves
in Materials Having Hexagonal Internal Structure, /nt. J.
Nonlinear Mech., 2014, vol. 67, pp. 27-33.

Bonetto, F., Lebowitz, J.L., and Rey-Bellet, L., Fourier’s
Law: A Challenge to Theorists, Mathematical Physics 2000,
Fokas, A., etal., Eds., London: Imperial College Press, 2000,
pp. 128-150.

Eremeev, V.A., Ivanova, E.A., and Morozov, N.F., Some
Problems of Nanomechanics, Phys. Mesomech., 2014,
vol. 17, no. 1, pp. 23-29.

Eremeyev, V.A., Ivanova, E.A., and Indeitsev, D.A., Wave
Processes in Nanostructures Formed by Nanotube Arrays
or Nanosize Crystals, J. Appl. Mech. Tech. Phys.,2010,
vol. 51, no. 4, pp. 569-578.

Kuzkin, V.A., Comment on “Negative Thermal Expansion
in Single-Component Systems with Isotropic Interac-
tions”, J. Phys. Chem.,2014,vol. 118, no. 41, pp. 9793—
9794.

Kuzkin, V.A. and Krivtsov, A.M., Nonlinear Positive/
Negative Thermal Expansion and Equations of State of a
Chain with Longitudinal and Transverse Vibrations, Phys.
Solid State. B, 2015, vol. 252, no. 7, pp. 1664—1670.
Goldstein, R.V., Gorodtsov, V.A., and Lisovenko, D.S.,
Mesomechanics of Multiwall Carbon Nanotubes and Na-
nowhiskers, Phys. Mesomech., 2009, vol. 12, no. 1,
pp. 38-53.

Podolskaya, E.A., Panchenko, A.Y., Freidin, A.B., and
Krivtsov, A.M., Loss of Ellipticity and Structural Transfor-
mations in Planar Simple Crystal Lattices, Acta Mech.,
2015, pp. 1-17.

Lepri, S., Livi, R., and Politi, A., Thermal Conduction in
Classical Low-Dimensional Lattices, Phys. Rep., 2003,
vol. 377, pp. 1-80.

Dhar, A., Heat Transport in Low-Dimensional Systems,
Adv. Phys., 2008, vol. 57, pp. 457-537.

Aoki, K. and Kusnezov, D., Bulk Properties of Anharmo-
nic Chains in Strong Thermal Gradients: Non-Equilibrium
¢* Theory, Phys. Lett. A,2000, vol. 265, pp. 250-256.
Gendelman, O.V. and Savin, A.V., Normal Heat Conduc-
tivity of the One-Dimensional Lattice with Periodic Poten-
tial, Phys. Rev. Lett.,2000, vol. 84, pp. 2381-2384.

PHYSICAL MESOMECHANICS Vol.19 No.3 2016

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

289

. Giardina, C., Livi, R., Politi, A., and Vassalli, M., Finite
Thermal Conductivity in 1D Lattices, Phys. Rev. Lett.,
2000, vol. 84, pp. 2144-2147.

Gendelman, O.V. and Savin, A.V., Normal Heat Conduc-
tivity in Chains Capable of Dissociation, Europhys. Lett.,
2014, vol. 106, p. 34004.

Bonetto, F., Lebowitz, J.L., and Lukkarinen, J., Fourier’s
Law for a Harmonic Crystal with Self-Consistent Stochas-
tic Reservoirs, J. Stat. Phys., 2004, vol. 116, pp. 783—-813.
Le-Zakharov, A.A. and Krivtsov, A.M., Molecular Dynamics
Investigation of Heat Conduction in Crystals with Defects,
Doklady Physics, 2008, vol. 53, no. 5, pp. 261-264.
Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., and
Zettl, A., Breakdown of Fourier’s Law in Nanotube Ther-
mal Conductors, Phys. Rev. Lett.,2008, vol. 101, p. 075903.
Xu, X., Pereira, L.F., Wang, Y., Wu, J., Zhang, K., Zhao, X.,
Bae, S., Bui, C.T., Xie, R., Thong, J.T., Hong, B.H.,
Loh, K.P., Donadio, D., Li, B., and Ozyilmaz, B., Length-
Dependent Thermal Conductivity in Suspended Single-
Layer Graphene, Nat. Commun., 2014, vol. 5, p. 3689.
Hsiao, T.K., Huang, B.W., Chang, H.K., Liou, S.C,,
Chu, M.W., Lee, S.C., and Chang, C.W., Micron-Scale
Ballistic Thermal Conduction and Suppressed Thermal
Conductivity in Heterogeneously Interfaced Nanowires,
Phys. Rev. B,2015, vol. 91, p. 035406.

Lepri, S., Mejia-Monasterio, C., and Politi, A., Nonequi-
librium Dynamics of a Stochastic Model of Anomalous
Heat Transport, J. Phys. A: Math. Theor.,2010, vol. 43,
p- 065002 (22 p.).

Kannan, V., Dhar, A., and Lebowitz, J.L., Nonequilibrium
Stationary State of a Harmonic Crystal with Alternating
Masses, Phys. Rev. E,2012,vol. 85, p. 041118.

Dhar, A. and Dandekar, R., Heat Transport and Current Fluc-
tuations in Harmonic Crystals, Physica A, vol. 418, pp. 49—
64.

Ivanova, E.A. and Vilchevskaya, E.N., Description of
Thermal and Micro-Structural Processes in Generalized
Continua: Zhilin’s Method and Its Modifications, General-
ized Continua as Models for Materials with Multi-Scale
Effects or under Multi-Field Actions, Altenbach, H., Fo-
rest, S., and Krivtsov, A.M., Eds., Berlin: Springer, 2013,
pp- 179-197.

Ivanova, E.A., Description of Mechanism of Thermal
Conduction and Internal Damping by Means of Two Com-
ponent Cosserat Continuum, Acta Mech.,2014,vol. 225,
no. 3, pp. 757-795.

Tzou, D.Y., Macro- to Microscale Heat Transfer: The
Lagging Behavior, Chichester: John Wiley & Sons, 2015.
Landau, L.D. and Lifshitz, E.M., Mechanics, A Course of
Theoretical Physics, Volume 1, Oxford: Pergamon Press,
1969.

Allen, M.P. and Tildesley, A.K., Computer Simulation of
Liquids, Oxford: Clarendon Press, 1987.

Krivtsov, A.M., Energy Oscillations in a One-Dimensional
Crystal, Doklady Physics, 2014, vol. 59,n0. 9, pp. 427—
430.



290

33.

34.

35.

36.

BABENKOV et al.

Krivtsov, A.M., Heat Transfer in Infinite Harmonic One-
Dimensional Crystals, Doklady Physics, 2015, vol. 60,
no. 9, pp. 407-411.

Krivtsov, A.M., On Unsteady Heat Conduction in a Har-
monic Crystal, ArXiv: 1509.02506, 2015.

Krivtsov, A.M., Dynamics of Thermal Processes in One-
Dimensional Harmonic Crystals, Problems of Mathemati-
cal Physics and Applied Mathematics, Tropp, E.A., Ed.,
St. Petersburg: Ioffe Institute, 2016, pp. 63—81.

Krivtsov, A.M., Dynamics of Energy Characteristics in
One-Dimensional Crystal, Proc. of XXXIV Summer School
“Advanced Problems in Mechanics”, St. Petersburg, Rus-
sia, 2006, pp. 274—208.

37.

38.

39.

40.

PHYSICAL MESOMECHANICS Vol.19 No.3

Poletkin, K.V., Gurzadyan, G.G., Shang, J., and Kulish, V.,
Ultrafast Heat Transfer on Nanoscale in Thin Gold Films,
Appl. Phys. B,2012,vol. 107, pp. 137-143.

Rieder, Z., Lebowitz, J.L., and Lieb, E., Properties of a
Harmonic Crystal in a Stationary Nonequilibrium State, J.
Math. Phys., 1967,vol. 8,no. 5, pp. 1073—1078.
Slepyan, L.I. and Yakovlev, Yu.S., Integral Transforms in
Nonstationary Problems of Mechanics, Leningrad:
Sudostroenie, 1980.

Gendelman, O.V., Shvartsman, R., Madar, B., and Sa-
vin, A.V., Nonstationary Heat Conduction in One-Dimen-
sional Models with Substrate Potential, Phys. Rev. E,
2012, vol. 85,no0. 1,p. 011105.

2016



		2016-08-17T11:30:38+0300
	Preflight Ticket Signature




