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Abstract Due to their excellent mechanical properties and extra high electrocon-
ductivity, suspended graphene sheets recently were proposed as perspective working
elements of nanosystems. This work is devoted to derivation of natural frequencies
of such sheets. Two different approaches are proposed. The first one is based on
representation of the graphene sheet as a thin rectangular membrane. In this case
the transversal oscillations are described with the classical one-dimensional wave
equation. Evaluation of the tension force in the membrane is performed basing on
the misfit between the graphene and silicon substrate crystal lattices. As a result,
the natural frequencies are found as the functions of the membrane length. Another
approach is to represent a graphene sheet as a thin plate. In this case a bending
rigidity of graphene has to be taken into account. As a result, it is shown that the
bending rigidity is more significant for the short resonators and leads to the higher
frequencies in comparison the long resonators.

1 Introduction

This work is devoted to the suspended graphene oscillations. Graphen is a monoato-
mic thin film with unique elastic, electrical, optical and thermal properties [7]. Thin
films are used in novel nanoelectromechanical systems (NEMS), e.g. nanoresonators
[6, 8]. Recently, graphene sheet were proposed for using in such systems. Up to now,
the existing graphene-based experimental set-ups [4, 5, 13] have not achieved as high
oscillation properties as silicon-based resonators. However, the technical problems
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will be hopefully solved soon, and the advantages of graphene systems will be used
for practical applications. First of all, they can be much easier miniaturized to the
nanoscale. As single-atomic graphene layer is a thinnest material at all, it is much
more sensitive to external effects than other films. It allows to use them as mass
sensors for nanoparticles.

This paper shows that graphene-based resonators can be used as the sources of the
high-frequency (up to several THz) oscillations. The transversal linear oscillations
of graphene sheet stretched over the trench in silicon oxide substrate are considered.
Two models are used to calculate the natural frequencies. First model represents
graphene sheet as a membrane with a constant tension. The second one represents
graphene as a thin plate. This model takes a bending rigidity of graphene into account
in addition to the tensile stiffness.

There are several works devoted to calculation of the natural frequencies of
graphene (see e.g. [1, 9, 10]). Most of them do not take the bending rigidity of
graphene into account. Recently, some authors paid their attention to this property
of monoatomic graphene sheets. As it will be shown later in this work, the bending
rigidity plays a significant role in case of the short resonators.

2 Membrane Model

2.1 Basic Equations

Let us consider the graphene sheet suspending over the trench in SiO2 substrate.
Suppose that it can be approximately represented as a flexible membrane fixed at two
supports. Let us consider the uniform deformations along the preferential direction
in a plane orthogonal to the direction of oscillations. In this case we can write the
equations of small oscillation of the membrane as

Hm

S0
ẅ = T ϕ′, ϕ = w′, (1)

here T is a tension force, ϕ is an angle of membrane element rotation, w is a membrane
bending deflection, H is a sheet width, ρ0 is a linear density of graphene sheet (mass
of a unit of area). A point and an accent correspond to the time (t) and longitudinal
(x) derivatives respectively. For Eq. (1) is was used that ρ0 Hdx dx . Relations (1)
give the equations of transversal oscillations of the membrane

ẅ − c2w′′ = 0, c2 = σ/ρ0, (2)

where σ = T/H is a longitudinal distributed force in graphene sheet.
Let us note that the thickness of the membrane was not included into Eqs. (1) and

(2). This fact has a simple explanation. The thickness of an single-atomic layer can
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not be determined uniquely hence it is non-objective and can not be included into
the equations of dynamics [12]. Moreover, the width of the graphene sheet H also
is not used in Eq. (2).

The boundary equations are following: w = 0 at x = 0 and x = l. Here l is a
length of the membrane. Let us suppose that

w(x, t) = W (x)eiωt ,

then
W ′′ + κ2W = 0, κ = ω/c. (3)

Its common solution may be written as

W = A1 cos κx + A2 sin κx . (4)

A satisfaction to the boundary conditions let us find κ = πn/ l, where n = 1, 2, 3, . . .

After κ is found, the natural frequencies can be determined by formulae

ω = κc = πn

l

√
σ

ρ0
. (5)

2.2 Tension of the Sheet

Let us evaluate a tension in the graphene sheet. Let us believe that a tension is
connected with a misfit of graphene and substrate (SiO2) crystal lattices. It may
give a maximum elongation of the graphene sheet on the order of a/2. Then a
corresponding tension stress may be approximately found as

σ = a

2l
E, (6)

where E is a two-dimensional Young modulus of graphene measured in N/m.
A surface density of graphene sheet can be found as

ρ0 = m/S0, S0 = 3
√

3

4
a2, (7)

where S0 is a area pear atom in graphene sheet (a half of the elementary cell); a is
a distance between the nearest atoms. The substitution of Eqs. (6) and (7) to Eq. (5)
gives

ω = kE

(a

l

)3/2
ωE , kE = πn

2

√
3

2

√
3, ωE =

√
E

m
. (8)
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Here kE is a dimensionless ratio, ωE has the same unit of measure as a frequency.
For the first natural frequency kE ≈ 2.53, (8) gives a following evaluation for the
frequency of oscillations

ω = 2.53
(a

l

)3/2
ωE . (9)

2.3 Frequencies Calculation

Let us evaluate a first frequency of the transversal graphene sheet oscillations on
a base of previous results. According to [11], a graphene 2D Young modulus is
E = 350 N/m. A carbon atom mass m = 1.99 · 10−26 kg. Then, using calculations
with formula (8) one can obtain for the frequency ωE

ωE = 1.33 · 1014, νE = 1

2π
ωE = 21.1 THz. (10)

Then let us find the frequencies of the graphene sheets with different lengths taking
into account that a nearest distance between atoms in graphene is a = 0.142 nm [11].
The results if the calculations are given in Table 1. An average distance between the
rows of atoms in graphene differs dependently on the direction. It changes from

0.75 a to
√

3
2 a ≈ 0.87 a. Due to this, an average distance 0.8 a = 0.114 nm was

used to calculate an approximate number of the atomic rows along the graphene
layer as N = l/(0.8a). It is shown in a second column of the table.

3 Plate Model

3.1 Basic Equations

Let us consider a graphene sheet laying over a trench in a silicon oxide substrate as
a plate on the two supports. Similar to the previous part, let us consider the uniform
deformations along the preferential direction in a plane orthogonal to the direction
of oscillations. In this case a problem of the plate small oscillations can be reduced
to the problem of Bernoulli-Euler beam oscillations:

Table 1 Natural frequencies
of the graphene sheets
(membrane model)

l (nm) N ν

1 8,803 90 MHz

100 880 2.9 GHz

10 88 90 GHz

1 9 2.9 THz
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Hρ0ẅ = N ′, N = −M ′, M = DHϕ′, ϕ = w′. (11)

Here N is a transversal force, M is a bending moment, ϕ is an angle of the plate
element rotation, w is a plate deflection, H is a graphene sheet width, ρ0 is a linear
density of graphene sheet (mass of the unit of the square), D is a bending rigidity; a
dot and a stroke correspond to the time and x coordinate respectively. When obtaining
the Eq. (11) it was used that ρ0 Hdx is a mass of the element with a width H and a
length dx , and a bending stiffness D is a ratio between a distributed bending moment
M/H and the angular deformation ϕ′. Equation (11) give the equation of the bending
oscillations of the plate

ẅ + b4w′′′′ = 0, b4 = D/ρ0. (12)

A thickness of the plate was not included into the Eqs. (11) and (12) as well as the
thickness of the membrane was not included in the oscillations equation in the previ-
ous part. The explanation is the same: atomic sheet thickness can not be determined
uniquely hence it is non–objective and can not be included into the equations of
dynamics (11) and (12). The width of the layer H also was not included in Eq. (12).

The boundary conditions at x = 0 and x = l where l is a plate length are the
following:

w = 0, w′ = 0 (solid support), w′′ = 0 (joint), (13)

relatively for the solid support or for the joint.
Let us allow w(x, t) = W (x) eiωt . Then one can obtain

W ′′′′ − κ4W = 0, κ2 = ω/b2. (14)

Its general solution may be found as

W = A1 cos κx + A2 sin κx + A3 cosh κx + A4 sinh κx . (15)

After the satisfaction to the boundary conditions one can findκ as κ = γ / l. Here a
dimensionless ratio γ is a solution of the following equations

sin γ sinh γ = 0 (joint), cos γ cosh γ = 1 (solid support). (16)

From the solutions of these equations (exact solution for the joint bearing and an
approximate one for the solid support) it follows

sin γ = 0 ⇒ γ = πn (joint) (17)

or
cos γ = 0 ⇒ γ = π

2
+ πn (solid support), (18)
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where n = 1, 2, 3 . . . The maximum error 1.8 % follows from the approximate
solution for the first natural frequency. For the other frequencies the approximate
solution is very close to the exact one. The exact solution of equations (16) give the
following values for the first natural frequency

γ = 3.145193 (joint), γ = 4.730041 (solid support). (19)

After γ is found the natural frequencies are determined from (12) to (14)

ω = κ2b2 = γ 2

l2

√
D

ρ0
. (20)

There is an important conclusion following from the last formula. It can be noticed
that the natural frequencies are inversely as the square of the plate length. It gives an
opportunity to change a frequency of the graphene oscillator in a very wide range.
For instance, if the length of the plate increases 10 times then the frequency increases
100 times.

3.2 Evaluation of the Bending Oscillations Frequency

The bending rigidity of the graphene layer is given by formula [3]

D =
√

3

6

3cT + cB

cT + cB
cB, (21)

where cT and cB are the torsional and binding stiffnesses respectively. We use this
parameters basing on the concept of mechanical representation of the carbonic bond
[2]. Unfortunately, so far there are no experiments to determine cT and cB . Hence,
we will use the relations between these parameters and cD , where cD is a transversal
stiffness of carbonic bond in graphene.

cT = 1

12

cDa2

1 + ν
, cB = 1

12
cDa2, (22)

where a is a bond length, ν is a dimensionless parameter of interaction. Let us
substitute the (22) to formula (21). Then

D =
√

3

36
k(ν)cDa2, k(ν) = 1

2

4 + ν

2 + ν
. (23)
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There is a limit −1 ≤ ν ≤ 1
2 for parameter ν which gives for k(ν)

9

10
≤ k(ν) ≤ 3

2
. (24)

Hence, this parameter does not changes significantly and can be taken approximately
equal to 1.

A linear density of graphene can be found as

ρ0 = m/S0, S0 = 3
√

3

4
a2; (25)

where S0 is a square per one atom in graphene list (half of elementary cell square);
a is an interatomic distance.

Substitution of the formulae (23) and (25) into (6.22) allows to find the following
expression for the bending oscillations frequencies of graphene list

ω = kD
a2

l2 ωD, kD = γ 2

4

√
k(ν), ωD =

√
cD

m
. (26)

Here kD is a dimensionless parameter,ωD is a frequency of the transversal oscillations
of the atom held by the bond with a stiffness cD . Taking the Eqs. (19) and (24) into
account for the solid support boundary conditions one will obtain

4.66 ≤ kD ≤ 8.39. (27)

Let us take for simplicity kD = 6. Then the following approximate estimation for
the graphene layer

ω = 6
a2

l2 ωD. (28)

3.3 Frequencies Calculation

Let us evaluate the first natural frequency of the bending oscillations of graphene
layer using the results obtained above. Following [11], the transversal stiffness of the
bond between the carbon atoms in graphene is cD = 402 N/m. Mass of the carbon
atom is m = 1.99 · 10−26 kg. Then using (26) one could calculate a frequency of the
transversal oscillations of the carbon atom

ωD = 1.42 · 1014 s−1, νD = 1

2π
ωD = 22.6 THz. (29)

Here and after symbol ω denotes the cyclic frequency, ν is an ordinary frequency
(inversely to the oscillations period) which is 2π times lower than the cyclic one.

http://dx.doi.org/10.1007/978-3-642-29715-1_6
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Table 2 Natural frequencies
of the graphene sheets (plate
model)

l (nm) N ν (MHz)

1 8,803 2.7

100 880 273

10 88 27

1 9 2.7

Now let us use (28) to calculate a frequency of the graphene layer oscillations ν =
ω/(2π). Let us take a distance between the nearest carbon atoms in graphene as
a = 0.142 nm [11]. The results of the oscillations are given in Table 2. A second
column shows an approximate number of the rows of atoms along the sheet length.
It can be found as N = l/(0.8a) as it was done for Table 1.

Following (28), the frequency is inversely as a square of the graphene layer length.
Hence, change of the length lead to the much more significant change of the fre-
quency. According to this fact, one can variate the graphene frequency in a very
large limit. For instance, as it follows from Table 2 decrease of the resonator length
from 1 mkm to 1 nm lead to the increase of the frequency from 2.7 MHz to 2.7 THz.
Thus, the short resonators (1 nm or less) can give the frequencies of terahertz range.

4 Conclusions

Figure 1 shows a comparison of the calculation results obtained with the plate and
membrane models. The graphs show that for the lengths more than 1 nm the mem-
brane model gives higher frequencies. If the lengths are less than 1 nm then a plate

Fig. 1 Comparison of the frequencies of graphene oscillations obtained by different methods
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model gives higher frequencies. This means that the plate type of the oscillations
dominates for the shortest graphene sheets having up to 10 rows of atoms. Let us
note that this result was obtained for the sufficiently high tension of graphene. If the
tension is low, then plate type of the oscillations can be realized even for the graphene
sheets longer that several nanometers.

A difference between results obtained with membrane and plate models is con-
nected with a bending rigidity influence. The shorter is graphene layer, the more
significant bending rigidity is. Thus, a plate model should work better for the shorter
resonators but in the case of long resonators the bending rigidity of graphene can be
neglected.
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