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Abstract. The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain
with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to
specific heat), stress (related to thermal expansion), and Young’s modulus are monitored during the devel-
opment of modulational instability of the zone boundary mode. The instability results in the formation of
chaotic DBs followed by the transition to thermal equilibrium when DBs disappear due to energy radiation
in the form of small-amplitude phonons. It is found that DBs reduce the specific heat for all the considered
chain parameters. They increase the thermal expansion when the potential is asymmetric and, as expected,
thermal expansion is not observed in the case of symmetric potential. The Young’s modulus in the presence
of DBs is smaller than in thermal equilibrium for the symmetric potential and for the potential with a
small asymmetry, but it is larger than in thermal equilibrium for the potential with greater asymmetry.
Our results can be useful for setting experiments on the identification of DBs in crystals by measuring their
macroscopic properties.

1 Introduction

Discovery of discrete breathers (DBs), or intrinsic local-
ized modes (ILMs) – spatially localized large-amplitude
oscillatory modes in nonlinear lattices free of defects –
three decades ago [1–3] has triggered extensive studies
devoted to the phenomenon of vibrational energy local-
ization [4,5]. Experimentally DBs have been excited in
the physical systems of different nature, including macro-
scopic periodic systems [6–8], nonlinear metamaterials,
e.g., granular crystals [9–16] and arrays of microme-
chanical cantilevers [17–19], electrical [20–22] and optical
lattices [23], superconducting Josephson junction arrays
[24,25], etc. DBs can be found in crystal lattices [26],
as confirmed by measuring vibrational spectra for alpha-
uranium [27–29], helium [30], NaI [31,32], graphite [33],
and PbSe [34]. On the other hand, these experimental
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results in some cases can be interpreted in different ways
and they are still debated [35].

Nowadays, numerical simulations are very important
for investigation of DB properties in various types of
crystals. Using ab initio simulations, the presence of
DBs in strained graphene and graphane has been con-
firmed [36,37]. With the help of molecular dynamics
method DBs have been studied in the ionic crystals
[38–40], lattices with pair-wise potentials [41–43], crys-
tals with covalent bonding [44,45], metals [46–54], inter-
metallic compounds [43,55–57], carbon and hydrocarbon
nanomaterials [58–72], h-BN [73], and DNA [74–77].

It is of great importance to understand how DBs affect
macroscopic properties of crystals [78]. In the experi-
mental studies, the connection of anomalies in thermal
expansion [29] and heat capacity [27] of α-uranium at high
temperatures to excitation of DBs has been established.
DBs can be responsible for the turbulent dynamics [79].
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It was shown numerically that transition from ballistic
to normal heat conduction is a consequence of presence
of DBs in a nonlinear chain [80]. DBs can assist energy
transfer to ac-driven nonlinear chains [81]. DBs increase
(decrease) specific heat of the nonlinear chain with soft
(hard) type nonlinearity on-site potential and harmonic
nearest-neighbour coupling [82].

For a chain with on-site potential, such as considered
in [82], one cannot calculate the effect of DBs on thermal
expansion and on elastic constants because the on-site
potential elastically pins the particles of the chain to
their lattice positions and the chain cannot expand under
thermal fluctuations or external force. Thermal expan-
sion and elastic constants are very important properties
in the context of solid state physics and materials science.
That is why, in the present study, the Fermi-Pasta-Ulam
(FPU) chain is considered and these macroscopic prop-
erties are calculated together with the specific heat. For
this we use the same approach as in [82], namely, we sim-
ulate the modulational instability of the zone boundary
mode (q = π) which leads first to energy localization in
the form of long-lived DBs and subsequent transition to
thermal equilibrium [20,83–92]. The macroscopic charac-
teristics of the chain in the regime when energy is localized
on DBs are compared with that in thermal equilibrium,
thus revealing the effect of DBs on those properties. We
note that properties of DBs in the FPU chain have been
analyzed by Flach and Gorbach in [93].

Overall, this study is complementary to our previous
work [82] done for the chain with the on-site potential.
Having on-site potential one can easily switch between
hard- and soft-type nonlinearity, and comparison of these
two regimes was the focus of that study. However, ther-
mal expansion and elastic constants could not be analyzed
in [82]. The FPU chain considered here allows calcula-
tion of thermal expansion and elastic constants but it
can support only DBs with hard-type nonlinearity having
frequencies above the gapless phonon spectrum. In this
respect, the models with and without on-site potential
are of different physical nature, they both have numerous
applications in different problems and it is important to
investigate both types of chains.

Our paper is organized as follows. In Section 2 the model
and simulation details are described. The simulation
results on modulational instability of the zone-boundary
mode and macroscopic properties of the chain are pre-
sented in Section 3. Our conclusions are presented in
Section 4.

2 The model and simulation setup

We consider the FPU chain of particles having mass m
(see Fig. 1) described by the Hamiltonian

H = K + P =
∑
n

mu̇2
n

2
+
∑
n

U(dn), (1)

where

dn = un+1 − un, (2)

Fig. 1. FPU chain of harmonically coupled, unit mass point-
like particles interacting with the quartic polynomial on-site
potential with the nearest neighbours.

and K and P are the kinetic and potential energy, un
and u̇n are displacement from its equilibrium position and
velocity of the nth particle, overdot stands for differentia-
tion with respect to time. Each particle is anharmonically
coupled to their nearest neighbors:

U(ξ) =
k

2
ξ2 +

α

3
ξ3 +

β

4
ξ4, (3)

where k, α and β are constants.
Without loss of generality, we set m = 1 and k = 1.

We take β = 3 and consider three different values for α,
namely, α ∈ {0,−1/4,−1/2}. For α = 0 the potential is
symmetric, while for the chosen negative values of α it is
an asymmetric single-well potential.

From the Hamiltonian defined above, the following
equation of motion can be derived

mün = k(dn − dn−1) + α(d2
n − d2

n−1)

+β(d3
n − d3

n−1). (4)

The Störmer method of order six with the time step
τ = 10−3 is used for numerical integration of these equa-
tions. With such a time step, the relative change in total
energy of the chain in a typical numerical run is not
greater than 10−5.

Substituting the ansatz un ∼ exp [i(qn − ωqt)] into
equation (4) with α = β = 0, one finds the relation
between wave number q and frequency ωq for the small-
amplitude normal modes in the form

ω2
q =

2k

m
(1− cos q). (5)

The phonon band of the chain ranges from ωmin = 0 for
q = 0 to ωmax = 2 for q = ±π.

Here, a chain of N = 2048 particles is considered. Test
runs with larger number of particles produced nearly the
same results.

Initial conditions are set in the form of the zone-
boundary mode (q = π) with the amplitude A,

un = A sin (πn− ωmaxt). (6)

If the amplitude A is not too small, then this mode is mod-
ulationally unstable. At t = 0, all the particles have the
same energy but the instability entails energy localization
which can be characterized by the localization parameter

L =

∑
e2
n(∑
en

)2 , (7)
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where

en =
mu̇2

n

2
+

1

2
U(dn) +

1

2
U(dn−1), (8)

is the energy of nth particle.
We define temperature as the averaged kinetic energy

per atom,

T = K̄ =
1

N

∑
n

mu̇2
n

2
. (9)

The Boltzmann constant here is set to be equal to 2. Heat
capacity of the chain is defined as

C = lim
∆T→0

∆H

∆T
, (10)

where ∆H is the increment in energy of the chain and
∆T is the corresponding temperature increment. The spe-
cific heat capacity (or simply specific heat) is the heat
capacity per particle. Periodic boundary conditions are
used meaning that the specific heat at constant volume is
calculated.

In our simulations, total energy H is conserved, so that
equation (10) cannot be used. We characterize the specific
heat of the chain at constant volume by the ratio

cV =
H̄

K̄
, (11)

where H̄ (K̄) is the total (kinetic) energy of the chain
per atom. In linear systems H̄ = 2K̄ and cV = 2. Due to
nonlinearity, the kinetic energy can differ from the poten-
tial energy resulting in deviation of cV from this value.
Note that the relation between total to kinetic energy
ratio and specific heat has been discussed in a number
of works [94,95], justifying the use of equation (11).

Stress in the chain is calculated as follows

σ =
1

N

N∑
n=1

(kdn + αd2
n + βd3

n). (12)

Modulus of elasticity of the chain is defined by

E =
1

N

N∑
n=1

[
(kdn + αd2

n + βd3
n)(1 + dn)

+ (k + 2αdn + 3βd2
n)(1 + dn)2

]
. (13)

In Section 3, the time evolution of localization parame-
ter, specific heat, stress in the chain and Young’s modulus
of the chain have been calculated. These macroscopic char-
acteristics have been compared in the regime of energy
localization by DBs with those in thermal equilibrium.

3 Modulational instability

We excite the zone-boundary mode equation (6) in the
chain using various amplitudes A. From the numerical

Fig. 2. Variation of the localization parameter as the function
of time for various amplitudes of the initially excited zone-
boundary mode, A. For all cases, at t = 0 the localization
parameter is L = 1/N = 0.49× 10−3. There is an increase in L
as a consequence of energy localization on DBs due to modu-
lational instability. Then as the DBs gradually radiate energy,
L decreases and eventually the system reaches thermal equi-
librium with L oscillating near the value of 1.8 × 10−3. The
points of maxima of L are marked with triangles.

integration of equation (4) we find the change in the local-
ization parameter (7), specific heat (11), stress (12) and
Young’s modulus (13).

3.1 Energy localization

Figure 2 shows the localization parameter as a function
of time for different amplitudes A and three values of
the potential asymmetry parameter α. For all the curves,
the localization parameter is minimal at t = 0 that is
L = 1/N = 0.49 × 10−3. It increases gradually as a con-
sequence of appearance of modulational instability that
leads to formation of DBs and, hence, energy localiza-
tion. Finally, the system comes to thermal equilibrium
and the DBs slowly radiate their energy, the parameter L
gradually decreases and oscillates near 1.8× 10−3.

In Figure 3 the energy distribution over the FPU chain
is shown for various values of the potential asymmetry
parameter α from α = 0 in (a) to α = −0.5 in (c) at the
time when localization parameter is maximal; here we see
sets of highly localized DBs.

The time evolution of the number of DBs produced,
NDB, and the corresponding average DB energy, EDB, are
shown in Figures 4 and 5, respectively, for different val-
ues of the zone-boundary mode amplitudes A and for three
values of the potential asymmetry parameter α. In these
plots, by triangles we indicate the points when the local-
ization parameter L reaches its maximum. It can be seen
from Figure 4 that the maximal number of DBs for α = 0
very weakly depends on A and for the negative values of
α maximal values of NDB are somewhat greater for larger
A. The same can be said about the maximal DB energy:

https://epjb.epj.org/
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Fig. 3. Total energies of particles at the moment of maxi-
mal localization parameter for different values of the potential
asymmetry parameter α. In (a) the result is given for A = 0.08
and in (b) and (c) for A = 0.1. The results for other studied
values of A look qualitatively similar.

Fig. 4. Number of DBs as the function of time for vari-
ous amplitudes of the initially excited zone-boundary mode
at different values of the potential asymmetry parameter α.
Triangles indicate the points of maximal localization parame-
ter.

it weakly depends on A for α = 0 and increases with A
for negative α.

Kosevich and Kovalev have derived the criterion for the
existence of DBs in FPU chain in the following form [96]

3kβ

4α2
> 1. (14)

For our choice of model parameters, this criterion is vio-
lated for |α| > 3/2. For the values of α used in our
simulations the criterion equation (14) is fulfilled but for
increasing asymmetry of the potential, the conditions for
the existence of DBs deteriorate. This explains the general

Fig. 5. Average DB energy as the function of time for vari-
ous amplitudes of the initially excited zone-boundary mode at
different values of the potential asymmetry parameter α. Tri-
angles indicate the points of maximal localization parameter.

trend seen in Figures 2–5, that the number of chaotic DBs
and their energy decrease with increasing |α|.

The zone-boundary mode equation (6) is unstable for
the amplitude greater a threshold value, A > A∗, which
depends on the potential asymmetry parameter α. For
larger asymmetry of the potential A∗ is smaller. That is
why in Figures 2–5 and in what follows we take A ≥ 0.08
for α = 0 and A ≥ 0.05 for α = −0.25 and −0.5. For α = 0
and A = 0.05 the zone-boundary mode is stable and it
does not split into DBs.

From Figure 4 one can also see that NDB reaches
its maximum well before the localization parameter L
becomes maximal for the case of α = 0 and α = −0.25,
but when α = −0.5, first L reaches a maximal value and
then NDB. As for EDB, as shown in Figure 5, the time
when it attains maximal value is close to the time when
L is maximal.

It is also worth pointing out that the maximal num-
ber of DBs, i.e. NDB, weakly depends on the values of
α (see Fig. 4), whereas the maximal DB energy, EDB,
rapidly decreases with increasing asymmetry of the poten-
tial (see Fig. 5). It can be deduced that the wavelength of
modulational instability and hence, the number of energy
localization centers, weakly depend on α, but the above
mentioned deterioration of DB existence condition with
increasing |α| mostly affects the average DB energy.

3.2 Total to kinetic energy ratio (specific heat)

The variation of specific heat with respect to time is plot-
ted for the various mode amplitudesA in Figure 6 for three
different values of the potential asymmetry parameter α.
We actually present the deviation of specific heat from
its theoretical value of 2 for the linear system, normalized
by A. The black triangular markers represent the values
at which the localization parameter is maximal. From the
comparison of Figures 2 and 6, we can observe that the

https://epjb.epj.org/
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Fig. 6. Specific heat normalized with respect to the zone-
boundary mode amplitude A as a function of time for various
values of A at three different values of the potential asymmetry
parameter α. The black triangular markers indicate the corre-
sponding values at maximal localization parameter L. It can
be seen that specific heat is close to minimum when DBs are in
the system and it increases as the system approaches thermal
equilibrium.

specific heat is minimal when the the localization parame-
ter is close to its maximum. The effect is most prominent
for symmetric potential (α = 0) and it becomes weaker
with increasing potential asymmetry. Thus, the minimal
value of (cV − 2)/A for α = 0 is about −2.5, while for
α = −0.25 and −0.5 it is −1.5 and −1.2, respectively.
This correlates with the fact that maximal localization
parameter reduces with increasing |α| (see Fig. 2). The
specific heat increases during the transition to thermal
equilibrium. From this, we conclude that the specific heat
of the chain is reduced by the DBs resulting from the
modulational instability of the zone-boundary mode. This
can be explained quite simply as in our system with hard
type anharmonicity, the DB frequency increases with its
amplitude. Increase in the oscillation frequency results
in an increase of particle velocities and thus, in their
kinetic energies. Kinetic energy is in the denominator of
equation (11) (which means there is an inverse proportion-
ality between cV and K ) and hence its increase results in
a decrease of cV . Analogously, for the case of soft type
anharmonicity, DB frequency decreases with its ampli-
tude and the effect is just opposite, i.e., DBs increase the
specific heat [82].

3.3 Stress

The time-dependence of stress in the linear chain is plotted
for the various mode amplitudes A in Figure 7 for different
values of the potential asymmetry parameter: (a) α = 0,
(b) α = −1/4, and (c) α = −1/2. We present here the
deviation of stress σ from its value in thermal equilibrium,

σ∗ =
1

t2 − t1

∫ t2

t1

σdt, (15)

Fig. 7. Stress as the function of time for various amplitudes of
the initially excited zone-boundary mode at different values of
the potential asymmetry parameter (α). The triangular mark-
ers indicate the corresponding values at maximal localization.
The σ values have been normalized by subtracting the corre-
sponding thermal equilibrium values σ∗ to get the results in a
comparable range.

Fig. 8. The stress at thermal equilibrium as the function
of amplitude of the initially excited zone-boundary mode for
different values of the potential asymmetry parameter (α).

where t1 is the time when system reaches the state of
thermal equilibrium with stress oscillating near a constant
value, and t2 − t1 = 104 is the sufficiently long time of
averaging.

For the symmetric potential (α = 0) there is no ther-
mal expansion and σ∗ = 0. For negative values of α the
dependence of σ∗ on A is given in Figure 8. In the limit of
very small A, i.e., for the linear regime with small ampli-
tude phonons, the stress is zero. For greater asymmetry,
the absolute value of σ∗ is larger for the same value of A
[cf. (a) and (b)]. For α = −0.5 the values of σ∗ are nearly
doubled as compared to those for α = −0.25, revealing
nearly linear dependence of σ∗ on α.

https://epjb.epj.org/
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Fig. 9. Modulus of elasticity as the function of time for var-
ious amplitudes of the initially excited zone-boundary mode
at different values of the potential asymmetry parameter (α).
The triangular markers indicate the corresponding values at
maximal localization. The values of E have been normalized
by subtracting the corresponding thermal equilibrium values
E∗ to get the results in a comparable range.

Coming back to Figure 7, once again according to the
position of the triangular markers or from the comparison
of Figures 2 and 7, it can be seen in (b) and (c) that
the stress is maximal when the localization parameter is
close to its maximum. During the transition to thermal
equilibrium, the stress in the chain decreases. Maximal
value of σ − σ∗, observed for α = −0.25, is 0.0008 and
it is one order of magnitude greater for α = −0.5. This is
understandable taking into account the this effect is due to
the asymmetry of the potential and, naturally, it becomes
stronger for increasing asymmetry.

Note that negative (compressive) stress appears in the
system because its thermal expansion is suppressed by the
use of periodic boundary conditions. In the chain with free
ends, for negative α, thermal expansion at zero stress will
be observed.

From this, we conclude that the DBs increase the stress
in the FPU chain with periodic boundary conditions and
in the case of free boundary conditions they will produce
thermal expansion at zero stress.

3.4 Modulus of elasticity

The time-dependence of the Young’s modulus of elastic-
ity E for the FPU chain is plotted for the various mode
amplitudes A in Figure 9 for (a) α = 0, (b) α = −1/4,
and (c) α = −1/2. Again, the difference between E and
its value in thermal equilibrium, E∗, is given. The latter
is calculated as

E∗ =
1

t2 − t1

∫ t2

t1

Edt, (16)

where t1 is the time when system reaches the state
of thermal equilibrium with modulus oscillating near a

Fig. 10. The Young’s Modulus of elasticity at thermal equi-
librium as the function of amplitudes of the initially excited
zone-boundary mode for different values of the potential
asymmetry parameter (α).

constant value, and t2 − t1 = 104 is the time of averaging.
The values of E∗ for different initial mode amplitudes are
plotted in Figure 10 for (a) α = 0, (b) α = −1/4, and
(c) α = −1/2.

From the comparison of Figures 2 and 9, it can be seen
that the modulus of elasticity is minimal when the local-
ization parameter is maximal for α = 0 and α = −0.25.
In the limit of very small A one has E∗ = 1 and the com-
pressive rigidity of the chain increases with increasing A
almost equally for different values of α.

From Figure 9, it can be seen that the effect of DBs on
the Young’s modulus is more pronounced for the symmet-
ric potential (α = 0). In this case, E−E∗ is minimal when
DBs are in the system and it increases while the system
approaches thermal equilibrium. From this, we conclude
that the resulting DBs decrease the modulus of elasticity
of the FPU chain with symmetric potential.

The effect of the Young’s modulus reduction by DBs
is much weaker for α = −1/4 and this trend gets even
reversed for α = −1/2, i.e., in this case the modulus of
elasticity is maximal when the localization parameter is
maximal and decreases in thermal equilibrium. Thus, no
definite conclusion can be made about the effect of DBs
on the Young’s modulus of the FPU chain with the asym-
metric potential since it can be qualitatively different for
different values of the asymmetry parameter.

This non-monotonous dependence of E − E∗ on α can
be explained by the fact that E depends not only on
dU/dξ, but also on d2U/dξ2, see equation (13), and thus,
it is defined by the interplay between these two different
quantities. In contrast, stress in the chain depends only
on dU/dξ, see equation (12), and it shows a monotonous
dependence on α.

4 Conclusions

In this study, the effect of DBs on different macro-
scopic properties of α-β-FPU chain was discussed. The

https://epjb.epj.org/
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properties such as total to kinetic energy ratio (related to
specific heat), internal stress (related to thermal expan-
sion) and Young’s modulus were measured during the
transition from modulationally unstable zone-boundary
mode through the regime with high energy localization
on DBs to thermal equilibrium.

It was found that for the chain with any set of param-
eters, specific heat is reduced by DBs. This is due to the
hard-type anharmonicity of the chain with DBs having
greater vibrational frequencies for greater amplitudes. In
the regime of energy localization by DBs, vibration fre-
quencies increase, and this leads to an increase in particles
velocities and thus, their kinetic energies. Then, accord-
ing to equation (11), an increase of kinetic energy in the
DB regime results in the reduction of the specific heat.
In the chains with soft-type anharmonicity DB frequency
drops with its amplitude and the effect is opposite, i.e.,
DBs increase the specific heat [82].

Internal stress in the chain with symmetric poten-
tial (α = 0) does not appear since thermal expansion
is observed only for asymmetric potentials. For negative
α values considered in this study, negative (compres-
sive) stress appears in the chain with periodic boundary
conditions that suppress free thermal expansion. If free
boundary conditions were used, thermal expansion of the
chain at zero stress would be observed. The compres-
sive stress is greater in the regime with DBs and thus,
DBs increase thermal expansion of the FPU chain with
negative α.

In the chain with symmetric potential, DBs reduce
the Young’s modulus, but with increasing asymmetry
the effect gets weaker and for α = −1/2 it becomes
even reverse, i.e, an increase in modulus of elasticity is
observed.

The results obtained in this work for FPU chain, which
does not feature an on-site potential, complement the pre-
vious study [82] for the chain with the on-site potential.
In [82] the analysis of thermal expansion and elastic con-
stants was in principle impossible and only heat capacity
was analyzed. Here we were able to calculate all these
important properties. On the other hand, the chain con-
sidered in [82], depending on the parameters, supports
DBs with hard- and soft-type nonlinearity, while FPU
chain supports only hard-type nonlinearity DBs.

Our results help to interpret the results of experimental
studies on the effect of DBs on macroscopic proper-
ties of crystals [27,29]. In particular, in the work [27]
it has been suggested that heat capacity of α-uranium
increases at high temperatures due to excitation of DBs.
However, phonon spectrum of α-uranium is gapless, it
supports hard-type anharmonicity DBs [51], which can
only decrease heat capacity, as it follows from the results
presented here and in the work [82].

The effect of DBs on macroscopic properties of nonlin-
ear lattices of higher dimension and of real crystals could
become a subject of future study.
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