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Abstract

CrossMark

An adiabatic transition between two equilibrium states corresponding to different stiffnesses in
an infinite chain of particles is studied. Initially, the particles have random displacements and
random velocities corresponding to uniform initial temperature distributions. An instantaneous
change in the parameters of the chain initiates a transitional process. Analytical expressions
for the chain temperature as a function of time are obtained from statistical analysis of the
dynamic equations. It is shown that the transition process is oscillatory and that the
temperature converges non-monotonically to a new equilibrium state, in accordance with what
is usually unexpected for thermal processes. The analytical results are supplemented by

numerical simulations.
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analysis

1. Introduction

Nonequilibrium processes in solids at the nano- and
microscale are currently a subject of intensive research,
partly driven by the development of nanotechnologies [1-9].
At the microscale, the transition to an equilibrium state in
harmonic crystals is a gradual equalization of the kinetic and
potential energies of atomic motion according to the virial
theorem [10—14]. However, this theorem does not describe
the processes that occur during the transition. A macroscopic
description of such a transition is also challenging since it
requires the application of special constitutive equations for
ultrafast atomic processes. Therefore, we have developed a
simple model that analytically describes both the microscopic
and macroscopic transitional processes.

Crystals with simple lattices are convenient models for the
study of nonequilibrium processes in solids [15—18]. Numer-
ical simulations [19] have shown that the process of energy
equalization in molecular systems is accompanied by high-
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frequency oscillations. In the pioneering paper by Klein and
Prigogine [20], the equations of atomic motion for a one-
dimensional harmonic crystal were solved directly and it was
shown that the energy oscillations following an instantaneous
thermal perturbation were described by the Bessel function of
the first kind. In later work [21], this problem was solved by
analysing the dynamics equations of the velocity covariances,
which allowed generalization of these results to more complex
systems, including multidimensional crystals [22-28].

In the above mentioned works, the nanoscale thermal pro-
cesses were studied separately from the mechanical processes.
The advances in modern technologies have produced ultra-
fast mechanical processes where the speed of the mechanical
load is comparable or even faster than the rate of the local
thermal equilibration in the system being considered. This con-
dition is fulfiled if the material is rapidly loaded by forces uni-
formly distributed along the length of the sample. Such loads
occur in the nanoscale electronic components of experimental
equipment requiring fast magnetic field switches which are,
for example, necessary in condensed matter physics, plasma
physics, or inertial confinement synthesis [29]. Electric pulses

© 2021 IOP Publishing Ltd  Printed in the UK
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can create distributed electromagnetic loads on circular sam-
ples for times up to several tens of nanoseconds [30, 31]. In
[32], the idea of an ultrafast photodetector capable of convert-
ing femtosecond light pulses into electric pulses of the same
length was proposed. Paper [29] demonstrates an all-optical
method for generating magnetic field impulses on the order
of several tesla for a duration of tens of femtoseconds. In the
near future it is expected that experimental electromagnetic
impulses will reach a duration of less than a femtosecond; fem-
tosecond lasers already exist [33] and attoseconds lasers are
under development [34—36]. Therefore, an analytical study of
the impact of ultrafast mechanical loads on thermal equilibra-
tion is needed to provide a theoretical basis for the upcoming
experimental studies.

In the present paper, we study an adiabatic non-equilibrium
process analogous to those considered previously [22-27].
This process is, however, initiated by instantaneous loading
instead of instantaneous heating. The material is deformed
by forces uniformly distributed along the length of the sam-
ple [30, 31], hence in this case the orders of the velocities of
the mechanical and thermal processes are the same. We note
that in this paper we neglect the effects of inertia during crys-
tal loading. The interaction between mechanical and thermal
processes requires an accounting for non-linearity, therefore
an a-FPU one-dimensional crystal [37—-39] is considered. The
non-linearity is assumed to be strong enough to cause adiabatic
heating in the crystal, but also sufficiently weak to analyse the
resulting energy oscillations in the framework of the harmonic
approximation.

The paper is organized as follows: in section 2 the mathe-
matical formulation of the problem is presented. Two problems
are then solved, where the first is the problem of the equi-
librium value of the kinetic temperature after loading at large
times ¢ — oo (section 3). The second problem that this paper
addresses is an analytical description of the transition to a new
state of equilibrium (section 4). It is shown that the crystal tem-
perature oscillates during the transition process via the Bessel
function, and the analytical solution is compared with a numer-
ical one. In section 5 an estimation of the temperature jump for
the real crystal is represented.

2. Formulation of the problem

We consider a model of an infinite one-dimensional crystal—a
chain of point masses connected by massless springs. It is
assumed that the chain particles interact only with their nearest
neighbours. At thermodynamic equilibrium, particle velocities
v, and bond deformations ¢, are independent stochastic quan-
tities, and all the statistical characteristics of the crystal are
constant over time. To describe the statistical behaviour of the
system, we introduce the following quantities:

T4 %
kg

where K is the mathematical expectation of the kinetic energy,

T is the kinetic temperature, n = 1,2,3, ... is the index of the

particle, (- - -) is the operator for the mathematical expectation,
v, 18 the particle velocity, kg is the Boltzmann constant, and m

of 1
K —m(vﬁ),

5 (M)

is the particle mass. The statistical characteristics of this sys-
tem depend on such crystal parameters as the particle mass and
bond stiffness. Variation of these parameters transfers the crys-
tal to a non-equilibrium state and begins the transition process,
which eventually brings the crystal to a new equilibrium state.

One of the natural ways to change the bond stiffness of the
crystal is by a homogeneous crystal deformation by external
loading. For example, such a loading can be realized by apply-
ing distributed electromagnetic forces to a circular sample [30,
31]. Based on the approach described in [21], we investigate
the evolution of the kinetic temperature of the crystal during
this transition process.

In addition to the mathematical expectation of kinetic
energy K, this paper uses the mathematical expectation of the
potential energy U:

def def def C , a4

Ue +e,) = (IT(e+€)), € = Uy — U1, I(e) = 5€ + 3

2)

where II is the interparticle potential, C and « are the

stiffnesses of the interparticle bonds of the first and the

second order, u, is the displacement of a particle from its

equilibrium position, and deformation is the sum of the homo-

geneous deformation e and stochastic deformation ¢,. The
homogeneous deformation €(¢) is applied instantaneously:

0, r<0
e(t) = 3
e, >0,

where € is a constant. The force F,, imposed on particle n — 1
by particle n is

F, ¥ Fle+ey,

F(e)=—1II'(ce) = —Ce — ac®, (4)
where prime stands for differentiation. The equation of particle
dynamics for the crystal is
mv, = n+1 — F,. (5)
We consider weak non-linearity, therefore the second terms
in the formulae for Il(¢) (2) and F(¢) (4) are small compared
to the first. Since the non-linear term is weak, a harmonic (lin-
ear) approximation is used to describe the thermal processes.
At relatively small times, the harmonic approximation is quite
accurate in describing thermal processes in a crystal with weak
non-linearity [23, 28, 39]. However, a non-zero stiffness of the
second order allows us to take the influence of the homoge-
neous deformation € on inter-particle potential into account.
The analytical expression for the kinetic temperature
at large times after the homogeneous deformation can be
obtained using the virial theorem, and is given in the following
section.

3. Crystal in the thermodynamic equilibrium

In this section, we first derive expressions for the kinetic tem-
perature of the crystal before loading and show how it relates
to potential energy. We then present a solution to the problem
of finding the asymptotic value of the kinetic temperature at
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long times after loading. The following section compares the
obtained asymptotic solution with the exact solution for the
kinetic temperature.

3.1. Prior to loading
At t < 0, according to (3), the energies are

1 C
K=_m@)., U= e
and the crystal is assumed to be at thermodynamic equilibrium.
Since only the mathematical expectations of the energies are
considered, henceforth the term ‘mathematical expectation’ is
omitted. Following [11], the kinetic energy (1) of the system
can be represented by (see appendix A):
1
K = =(g,F,). (7
2
Formula (7) allows us to obtain expressions for the equilib-
rium kinetic temperature of the crystal before and after the
instantaneous deformation, as follows:

) (6)

m(vy) = (eaF) = Cleg) + oey), ®

By neglecting the small term a(e3) in equation (8) we can

obtain expressions for the kinetic temperature of the crystal
prior to loading
ke Ty = m{v?) = C(2). )

n

From expression (9) it can be seen that the initial kinetic
temperature is proportional to the crystal potential energy (6).

In the next subsection, we consider the kinetic temperature
after loading.

3.2. After loading

At t > 0, the kinetic and potential energies of the crystal are

K = —m(v;), U= Il(e) + U,
(10)
1 I
Ur = 5 (C+2ae) (g,) + §a<en>,
where Ut is the thermal part of the potential energy. We note
that in formula (10) the term ce(e2) corresponds in order of
magnitude to the term C{(c2). However, to remain within the
framework of the harmonic theory, we neglect the term a{e?)
below. The term ave(¢2) allows us to describe the thermoelastic
effects. In the state of thermodynamic equilibrium the kinetic
energy K and the thermal part of the potential energy Uy are

equal, therefore the expression for kinetic temperature (1) is

Y

We note that Ut + K is constant for # > 0 in the transition pro-
cess by virtue of the energy conservation law. An expression
for this sum can be obtained by substitution into (11) of the
initial values of the corresponding quantities:

keT|, . = 2K = Ur + K.

1 1
ksT = 5m<u2> +3(C+ 2a00) (D],

n
=0 =0

12)

where the term a{¢3) /3 is omitted. Substitution of expressions
(9) into (12) yields:
Qe
Tl =To (1+ ?)' (13)
From expression (13) it follows that the change in kinetic tem-

perature 7, in the first approximation, is proportional to the
deformation e.

4. Dynamics of the transition process

In the previous section, the problem of finding the asymptotic
value of the temperature at large times was solved. This section
is focussed on the second problem of this paper, which is to
derive an expression for the temperature as a function of time.
By substituting expression (4) into (5) we obtain the following
equation of motion:

mi, = CAe, + 20€eAe, + alAe?, &, =Av,. (14
The term a/Ae? can be neglected in the case of small deforma-
tions. Thus, equation (14) become linear:
én = Un — (15)

. 2
Up = W (gn - 6}1—1)5 Un—1

&f \/ C+Tz‘“ Note that the sum C + 2ae plays the role

of first order stiffness after external loading. The initial condi-
tions for the system (15) are determined from equation (9):

kBT() kBTO
'Un|t:() = m Pns €n|t:() = TQn,

where p, and p, are independent random numbers with zero
mathematical expectation and unit variance:

where w

(16)

(OnPusi) = Oks (OnOntk) = Ok (17)

Here, 6, = 1 for k = 0 and 6; = 0 otherwise. Equation (16)
operates under the assumption that particle velocities and bond
deformations are independent at thermodynamic equilibrium.
The initial value problem (15) and (16) describes the stochastic
dynamics of the particles. The kinetic temperature of the crys-
tal as a function of time can then be found using the covariance
analysis approach [21, 25], by introducing the generalized
energies

def 1 der 1
Ki = Em(vnvwk), U = Emw2<5n5n+k>’

(18)

Ly € Ky — Uy,
where K, and U, are generalized kinetic and potential energies,
and L is the generalized Lagrangian. Differentiation of (18)
and the equations of motion (14) leads to the following initial
problem value for the generalized Lagrangian:

Li = 4Lyt — 2L4 + Lis1),

_ TokBOZG
C

19)

t=0: L= Ok ,Ck:O.
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The initial conditions for (19) are obtained from (9) and
(16). A solution for a similar initial problem is obtained in
[21]. According to that solution, the generalized Lagrangian
oscillates with a decreasing amplitude:

_ T()kBEOz
C

where J;(x) is the Bessel function of the kth order [40].

The kinetic energy K and thermal part of the potential
energy Ur are equal to the generalized kinetic and potential
energies with zero indexes, therefore the kinetic temperature
T can be expressed as follows:

Ly =

Jor(4wt), (20)

kgT = Lo + K + Ur. 21)

The kinetic temperature of the crystal as a function of time
can then be found using formulae (13), (20) and (21):

Toae
C

T="T,+ (1 — Jo(4wi)) . (22)
We note that, according to the asymptotic representation for

the Bessel function [40],

x> p+ 1

2 us T -
Ju(x) = ”E cos (x— 7” - Z) + O(x 3/2),

wherein the amplitude of the kinetic temperature oscillations
decreases in line with ~1/2,

Figure 1 shows a comparison of the analytical solu-
tion (22) with the numerical solution obtained by computer
simulations of the weakly anharmonic crystal consisting of
N =5 x 10* particles under periodic boundary conditions.
In the framework of the numerical experiment, the parame-
ters of the problem under consideration are chosen so that
ae/C = —0.1. The simulation uses the method of central dif-
ferences, with an integration step of 0.01/w,. At the initial
time, the particle displacements are zero, while the particle
velocities are random and correspond to the crystal temper-
ature 27. The process of energy equalization results in a
crystal temperature that oscillates with a decreasing ampli-
tude about an amplitude of 7. A homogeneous deformation
is applied when the temperature oscillations have a negligibly
small amplitude. After loading of the crystal, the temperature
then oscillates about a new equilibrium value.

In paper [23], it was shown numerically that thermal phe-
nomena in crystals with a sufficiently weak non-linearity do
not differ greatly from those in harmonic crystals. In the sim-
ulation, a time span sufficient to describe tens of temperature
oscillations after the homogeneous deformation has been cho-
sen. The time span however is chosen to be not large so that
the temperature oscillations significantly deviate from the har-
monic solution. To calculate the mathematical expectations for
the statistical quantities the results are averaged over all par-
ticles and 10° realizations, which are solutions of the same
equations with different randomly generated initial conditions.
According to paper [21], the crystal temperature before the

(23)

Figure 1. Oscillations of kinetic temperature 7 in the infinite crystal
after the instantaneous loading at # = 0. Numerical (dots) and
analytical (solid line) solutions are presented. The averaging is
performed using 10 numerical experiments. Number of particles

N =5 x 10%, constant 7 = 27 /w,, coefficient e /C = —0.1.

instantaneous deformation is the Bessel function of zero order.
The instantaneous deformation is applied when the amplitude
of the temperature oscillation is small compared to the absolute
value of ae/C.

As seen from figure 1, the analytical solution (22) practi-
cally coincides with the results of the numerical integration of
the chain dynamics system equations (3)—(5) for several tens
of oscillation periods.

Formula (13) gives the limiting value for the kinetic tem-
perature. According to expression (21), after the instantaneous
deformation, the kinetic temperature oscillates around this lim-
iting value and tends to it at large times. Thus, as r — oo,
expression (22) coincides with formula (13), as obtained from
the virial theorem. For arbitrary times this expression gives the
desired description of the nonequilibrium transition process.

5. Example

In order to estimate the temperature jump in the transition pro-
cess, we consider a one-dimensional ring of carbon atoms,
which is at a state of thermodynamic equilibrium with initial
temperature 7y = 300° K. We assume that following the result
of the homogeneous loading the bond deformation is 1.0% of
the equilibrium interparticle distance @ = 0.154 nm [41]. The
mass of the carbon atom is m = 1.99 x 1072 kg and the first-
order stiffness coefficient is taken to be equal to the stiffness of
diamonds bond C = 472 N m~! [42]. The second-order stiff-
ness coefficient can be found from the following formula [43]:

2
a= P2 (24)
kg
where 5= 0.7 x 107° K~! is the coefficient of the thermal
expansion of diamond [44]. The substitution of the stiffness
coefficients and deformation into formula (13) gives the new
equilibrium temperature value of 298.3 K. The asymptotic
period of the kinetic temperature oscillations in the transient
process described by formula (22), is approximately 10.2 fem-
toseconds. Thus 1.0% deformation leads to a change in the
crystal temperature by 0.6%.
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6. Conclusions

The paper presents an analytical approach for the analysis of
the transition process in one-dimensional crystals (chains) sub-
jected to an instantaneous homogeneous deformation. Such a
deformation can be interpreted as an instantaneous change in
the stiffness of the interparticle bonds in a chain. An instanta-
neous change of stiffness abruptly changes the potential energy
of the crystal, which leads to the changes in the kinetic energy
and the kinetic temperature. It is found that the transition pro-
cess is accompanied by high-frequency energy oscillations,
which have an analytical representation in terms of the zero
Bessel function of the first kind, and consequently the ampli-
tude of the transitional oscillations is inversely proportional
to the square root of time. After the decay in the oscillations
the system reaches a near equilibrium state corresponding to
the predictions of equilibrium thermodynamics. However, the
transition process can be studied in detail by use of the pre-
sented approach, where the analytical solution is confirmed
by numerical simulations. Using the technique described in
[22], the presented approach can be extended to analyses of
transition processes in two-dimensional and three-dimensional
materials. The obtained results are important in establishing
the link between the mechanical and thermal processes in
solids over the femtosecond time scale.
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Appendix A. The virial relation

Following [11] the kinetic energy (1) of the system can be
represented by

1
K= §<unvn> = 3 a(Fupr = E),

where expression (5) has been used. The second term in (A1)
is

(AD)

<un(Fn+1 - Fn)> = _<€nFn> + <Fn+1un> - <Fnun71>~ (Az)

Defining g def (Fnun—1), equation (A1) then takes the form

1 1 m
K= —(e,F,) — =g + = (uv,).
S(EnFa) = 28+ (o)
where prime stands for spatial differentiation. The quantities

g and (u,v,) are constant in the thermodynamic equilibrium

(A3)

state and their derivatives are zero. Therefore the expression
for the kinetic energy is
K = 2euFy)
= —(e .
2 ntn
Formula (A4) allows us to obtain expressions for the equilib-
rium kinetic temperature of the crystal before and after the
instantaneous deformation.

(A4)
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