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Abstract The analytical model of unsteady ballistic heat transfer in a one-dimen-
sional harmonic crystal is analyzed. A nonlocal temperature is introduced as a gener-
alization of the kinetic temperature. A closed equation determining unsteady thermal
processes in terms of the nonlocal temperature is derived. For an instantaneous heat
perturbation a time-reversible equation for the kinetic temperature is derived and
solved. This equation can be referred as the ballistic heat conduction equation, it is
somewhat similar to the hyperbolic heat conduction equation, but it has important
differences. The resulting constitutive law for the heat flux in the considered system
is obtained. This law significantly differs from Fourier’s law and it predicts a finite
velocity of the heat front and independence of the heat flux on the crystal length. The
analytical results are confirmed by computer simulations. Further developments of
the presented approach are referred.

1 Introduction

An understanding of heat transfer at microlevel is essential to obtain link between
microscopic andmacroscopic description of solids [1–3]. As far asmacroscopic scale
level is concerned the Fourier law of heat conduction is widely and successfully used
to describe heat transfer processes. At microscopic level, however, analytical and
numerical investigations have shown substantial deviations from Fourier’s law [4–6].
These inadequacies can be on principle addressed by using special laws of particles
interactions [7–10] or complex enough structures [11, 12]. Recent experimental data
however showed that Fourier’s law is indeed violated in low-dimensional [13–15].
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The main reason is that at microlevel the ballistic heat transfer dominates, in contrast
to macrolevel, where the diffusive (Fourier) heat conduction prevails. This motivates
interest to the simplest lattice models, in particular harmonic one-dimensional crys-
tals (chains), where the anomalies connected with the ballistic heat transfer are most
prominent [1, 16, 17]. Problems of this kind previously have been mainly addressed
in the context of the steady-state heat conduction [4–6, 17, 18]. The present work
focuses on unsteady conduction regimes [12, 19–22].

Here we describe an approach that allows rigorous derivation of macroscopic
heat conduction equations and corresponding anomalous heat conduction law for
harmonic systems in a one-dimensional, non-quantum case. This approach for the
simplest one-dimensional crystal was first presented in [23], below we show these
results in more details. The obtained equations differ substantially from the earlier
suggested heat transfer equations [24, 25], however they are in excellent agreement
with molecular dynamics simulations and previous analytical estimations [20].

2 The System

We consider a one-dimensional crystal, described by the following equation of
motion:

üi = ω2
e (ui−1 − 2ui + ui+1) (1)

where ui is the displacement, i is the number of the particle, ωe
def= √

C/m is the
elementary frequency, m is the particle mass, C is the stiffness of the interparticle
bond, dot is the time derivative. The crystal is infinite: the index i is an arbitrary
integer. The initial conditions are

ui |t=0 = 0 , u̇i |t=0 = σ(x)ρi , (2)

where ρi are independent random values with zero expectation and unit variance;
σ 2(x) is variance of the initial velocities, which is a slowly varying function of the
spatial coordinate x = ia, where a is the lattice constant. These initial conditions
correspond to an instantaneous temperature perturbation, which can be induced in
crystals, for example, by an ultrashort laser pulse [26, 27]. The displacements as
functions of time ui = ui (t) can be found as a solution of the Cauchy problem
(1)–(2). These functions are random—they depend linearly on the integration con-
stants, which are linear functions of the random values ρi (2).
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3 Nonlocal Temperature

The first analytical solution of a steady heat conduction problem for a harmonic
chain was obtained in [18] using a covariance matrix for coordinates and momenta.
Then this approach was extended and applied to various harmonic systems [4, 11,
16, 17]. Study of the covariance matrix allowed obtaining analytical expressions
for steady [28] and unsteady [29, 30] temperature profiles. Here a somewhat sim-
ilar approach based on analysis of covariances for velocities [23, 31, 32] is used.
Following [33] the nonlocal temperature θi j is defined as

kBθi j
def= m〈u̇i u̇ j 〉, (3)

where kB is the Boltzmann constant, angle brackets stand for mathematical expecta-
tion, 〈u̇i u̇ j 〉 is the velocity covariance (note that 〈u̇i 〉 ≡ 〈u̇ j 〉 ≡ 0). Then differentia-
tion of (3) with the use of the dynamics equation (1) allows to obtain the following
closed differential-difference equation of the fourth order [31]

....
θ i j − 2(Li + L j )θ̈i j + (Li − L j )

2θi j = 0, (4)

whereLi is the linear difference operator:Li ui
def= ω2

e (ui−1 − 2ui + ui+1). Equation
(4) is an exact one, it describes processes of two types: fast transition to the local
equilibrium [32] and slow heat transfer process [23]. For continuum description of
the heat transfer the nonlocal temperature is redefined as

(−1)n θn(x)
def= θi j , n

def= j − i , x = i + j

2
a, (5)

where n is the covariance index, x is the macroscopic spatial coordinate. If n = 0
then i = j and quantity θn coincides with the kinetic temperature T :

kBθ0(x) = kBT (x) = m〈u̇2i 〉, (6)

where i = x/a. According to its definition, the nonlocal temperature reflects a non-
local nature of thermal processes in harmonic crystals and can be considered as a
generalization of the kinetic temperature.

To obtain the simplified equation for description of the heat transfer only, the
following two approximations are used.

1. Continualization. The nonlocal temperature θn(x) is a slowly varying function
of the spatial coordinate x (on the distances of order of the lattice constant a).
This allows replacing the finite differences by the spatial derivatives [34]. The
approximation is adequate for processes that are sufficiently smooth in space, e.g.
for spatial temperature profiles in a form of waves that are much longer then the
lattice constant a.
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2. Slow process approximation. This approximation allows to neglect the term
with the fourth time-derivative in Eq. (4) resulting in the second order differential
equation with respect to time. Alternatively the second order equation can be
obtained [23] using the virial approximation [2]: time or spatial derivatives of
mathematical expectations are small with respect to quantities that have non-
zero values in thermodynamic equilibrium. This approximation is adequate for
processes that are not too far from thermodynamic equilibrium. In particular, the
virial approximation allows to express covariances of the bond strains in terms
of the nonlocal temperature.

Then the following second order differential-difference equation can be obtained
from Eq. (4):

θ̈n + 1
4c

2(θn−1 − 2θn + θn+1)
′′ = 0, (7)

where c = ωea is the speed of sound. This is a closed equation describing unsteady
thermal processes in the crystal in terms of the nonlocal temperature. The processes
under consideration should be such that the nonlocal temperature is sufficiently
smooth in time and space. Apart from this limitation any unsteady thermal pro-
cesses in the considered system satisfy equation (7). This equation in its current form
appeared for the first time in [33], its derivation can be found in [23] (in different des-
ignations) or in [35] (formore complex problem).After solution (analytical or numer-
ical) of Eq. (7) the kinetic temperature can be obtained as T (t, x) = θn(t, x)|n=0.

The initial conditions for Eq. (7) corresponding to the original initial conditions (2)
are:

θn|t=0 = T0(x)δn , θ̇n|t=0 = 0, (8)

where T0(x) = 1
2kB

mσ 2(x) is the initial temperature distribution; δn = 1 for n = 0,
otherwise δn = 0. The initial conditions (8) are taken after a fast transition process,
which results, according to the virial theorem, in a double reduction of the initial
kinetic temperature [32]. Note that in contrast with the random initial value prob-
lem (1)–(2), the initial value problem (7)–(8) is expressed in terms of mathematical
expectations, and therefore it is a deterministic problem.

4 The Ballistic Heat Equation

Using an integral Fourier transform in the spatial coordinate x the problem (7)–(8)
can be solved analytically. For the Fourier image θ̂n(t, k) we obtain

¨̂
θn = 1

4c
2k2(θ̂n−1 − 2θ̂n + θ̂n+1),

θ̂n|t=0 = T̂0(k)δn ,
˙̂
θn|t=0 = 0,

(9)
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where k is the spatial frequency, T̂0(k) is the Fourier image of the initial temperature
distribution T0(x). Let us note the similarity between (1)–(2) and (9): initial value
problem (9) can be interpreted as a motion of a harmonic chain having an initial shift
of the central particle. This kind of problems can be effectively solved in terms of
Bessel functions. In particular, Bessel functions were successfully applied to solution
of shock-wave problems in harmonic chains [36, 37]. Similarly, the problem (9) has
an analytical solution θ̂n(t, k) = T̂0(k)J2n(ckt), where J2n are the Bessel functions
of the 1st kind [38]. From the practical point of view the most interesting case is
n = 0, which gives Fourier image T̂ (t, k) of the kinetic temperature distribution:

T̂ (t, k) = T̂0(k)J0(ckt). (10)

From (10) it follows that the image T̂ (t, k) satisfies the Bessel differential equation

¨̂T + 1

t
˙̂T = −c2k2T̂ . (11)

Fourier inversion of (11) gives a partial differential equation for the temperature field

T̈ + 1

t
Ṫ = c2T ′′, (12)

which can be referred as the ballistic heat equation. The corresponding initial con-
ditions follow from (8):

T |t=0 = T0(x) , Ṫ |t=0 = 0. (13)

The obtained equation (12) is a particular case of the Darboux differential equa-
tion [39]. For description of the heat transfer in the harmonic one-dimensional crystal
it was originally derived in [23]. Later it was proved that the same equation describes
the ballistic heat transfer if the crystal is supported by an elastic foundation [40].
The ballistic heat equation describes the evolution of the temperature field after an
instantaneous thermal perturbation happened at t = 0, that is why this equation can
be used only with initial conditions (13). The condition Ṫ |t=0 means absence of the
heat flux in the initial state. For more complex situation the general equation for
nonlocal temperatures (7) should be used.

Fourier inversion of the representation (10) gives an analytical solution of the
initial value problem (12)–(13):

T (t, x) = 1

π

1∫

−1

T0(x − cts)√
1 − s2

ds. (14)

Similar integral representation without obtaining equation (12) was derived in [41]
using heat energy density correlation functions. Substitution s = cosϕ gives an alter-
native integral form
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T (t, x) = 1

π

π∫

0

T0(x + ct cosϕ) dϕ. (15)

The physical meaning of this representation is that ct cosϕ is the group velocity of
Eq. (1),whereϕ is a half of thewavenumber.Representation (15) canbe interpreted as
superposition of the classical wave equation solutions for all wave numbers. Further
investigations have shown that the similar rule is fulfilled for much more general
harmonic systems [42, 43].

Thus, an evolution of the temperature field in a one-dimensional crystal after an
instantaneous thermal perturbation is described by partial differential equation (12)
with initial conditions (13) or by integral formulas (14)–(15). According to (14) the
thermal front propagates with the sound speed c (in contrast to the thermal conduc-
tivity based on Fourier’s law where an unphysical instantaneous signal propagation
is realized). The obtained wave behavior of the heat front is similar to predictions of
the wave theories of heat conduction [24, 25]. However, the obtained solution has
important differences, which will be shown in the text to follow.

5 Heat Flux

For the considered system the heat flux can be represented [5, 6, 44] as

q = 1
2C〈(ui − ui+1)(u̇i + u̇i+1)〉. (16)

The heat flux q satisfies the energy balance equation

ρkB Ṫ = −q ′, (17)

where ρ = 1/a is the density (number of particles per unit volume), kB Ṫ stands for
the heat energy for the considered system. Joint consideration of Eqs. (12) and (17)
gives the constitutive law for the heat flux

q̇ + 1

t
q = −kBc

2ρT ′, (18)

which replaces Fourier’s law in the considered system. Alternatively, the law (18)
can be derived directly, in the same way as the ballistic heat conduction Eq. (12) is
derived. Integral representations for the heat flux follows from (14) and (18):

q(t, x) = kBcρ

π

1∫

−1

T0(x − cts)√
1 − s2

sds. (19)



The Ballistic Heat Equation for a One-Dimensional Harmonic Crystal 351

The alternative representation corresponding to (15) is

q(t, x) = kBcρ

π

π∫

0

T0(x + ct cosϕ) cosϕ dϕ. (20)

6 Comparison of Different Equations Describing the Heat
Conduction

Let us consider three models of heat conduction: the classic heat equation based
on Fourier’s law of heat conduction; the hyperbolic heat equation (thermal wave
equation) based on the Maxwell-Cattaneo-Vernotte law [24, 25]; the obtained above
ballistic heat equation (12). Brief comparison of these models is given in Table 1.
The hyperbolic heat equation and Eq. (12) have similar form and somewhat similar
behavior (e.g. a finite velocity of the heat front propagation). However, there are
significant differences:

1. The main difference is that τ , a material constant, is replaced in (12) by the phys-
ical time t . Consequently, these equations are close for intermediate tomes t ≈ τ ,
however they are substantially different for small and large times. Moreover, for
t → 0, from the first glance, the ballistic equation (12) has singularity. However,
same as for the hyperbolic equation, the solution of this equation does not have
any time singularity, which can be easily seen from formula (15). For t → ∞ the
asymptotics of the hyperbolic and ballistic equations are different: exponential
and power decay respectively—see Table 1(b).

2. The ballistic heat equation, as opposite to the hyperbolic and Fourier equations,
is not time-invariant—it changes with substitution t by t + t0. This is because
it describes reaction of the system on the instantaneous thermal perturbation at

Table 1 (a) Heat transfer equation, (b) equation connecting heat flux and temperature, (c) decay
law for the sinusoidal heat perturbation. Notations: t is time (variable), τ is the relaxation time
(constant), β is the thermal diffusivity, κ is the thermal conductivity, c is the sound speed, ρ is
the density, kB is the Boltzmann constant, k is the spatial frequency. Approximation (c) for the
hyperbolic heat equation is obtained for c2 = β/τ and large k; approximation for J0 is valid for
relatively large t

Fourier heat equation Hyperbolic heat equation Ballistic heat equation

(a) Ṫ = βT ′′ T̈ + 1

τ
Ṫ = β

τ
T ′′ T̈ + 1

t
Ṫ = c2T ′′

(b) q = −κT ′ q̇ + 1

τ
q = −κ

τ
T ′ q̇ + 1

t
q = −kBc

2ρT ′

(c) e−βk2t ≈ e− t
2τ cos (kct) J0(kct) ≈ cos (kct− π

4 )√
π
2 kc t
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t = 0, the general situation is described by more general Eq. (7), which is time-
invariant.

3. The ballistic heat equation is time-reversible: it does not change with substitution
t by−t . Same fulfils for the original dynamical equation (1) and the general equa-
tion for nonlocal temperatures (7). On contrary, the Fourier and hyperbolic heat
equations are not time-reversible. The contradiction between time-reversibility
of the classical microscopic equations and irreversibility of the corresponding
macroscopic continuum equations is one of the opened questions of the modern
physics [2, 45]. The obtained reversible macroscopic equation of the ballistic
heat conduction may be a step towards solution of this problem. In particular, it
will be shown below that this equation describes irreversible processes, such as
decay of the sinusoidal heat perturbation—see Fig. 1. Thus reversible equations
can produce irreversible solutions, even in a finite domain.

7 Sinusoidal Temperature Perturbation

We consider now a sinusoidal temperature perturbation

T0(x) = A0 sin kx + B, (21)

where A0 and B are temperature constants, k = 2π/λ is the spatial frequency, λ is
the wavelength of the perturbation. These initial conditions provide simple and infor-
mative testing of thermal transfer in closed systems [12, 23, 46]. This is especially
important for the ballistic heat transfer analysis, because in this case any external
heat supply can substantially affect the thermal processes [47, 48]. Formulas (14)
and (19) give an exact analytical solution for the temperature and heat flux

T (t, x) = A0 J0(kct) sin kx + B,

q(t, x) = −kBcρA0 J1(kct) cos kx,
(22)

where J0 and J1 are the Bessel functions of the 1st kind. This solution was obtained
in [23]. Previously, without obtaining equation (12), an existence of a Bessel function
solution for the sinusoidal temperature distribution in the one-dimensional harmonic
crystal was mentioned in [20], and solution similar to (22) for the temperature field
was obtained in Master-degree thesis [49].

To justify the assumptions in derivation of the analytical solution we compare it
with results of molecular dynamics (MD) simulations. Equation (1) is solved by the
central differences method, the time step is 0.01τ0, where τ0 = 2π/ωe. The initial
conditions (21) are set by a random number generator, the wavelength λ is equal to
the length of the chain containing 104 particles. To provide correspondence with the
analytical approach used above, 104 realizations of such chain with an independent
random initiation are computed. To optimize the computations all chains are joined
at end-points to form a long chain (108 particles) with periodic boundary conditions.
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Fig. 1 Oscillational decay of the thermal perturbation amplitude for 1D harmonic crystal. Com-
parison of the analytical solution (22) with the MD modeling results (104 joined chains containing
104 particles each). Dashed lines show the envelope proportional to 1/

√
t and also an exponential

envelope inherent to the hyperbolic heat equation

The results of the computations are compared with analytical solution (22) in Fig. 1.
The horizontal axis in Fig. 1 represents the dimensionless time t/t0, where t0 = λ/c;
the vertical axis stands for the oscillation amplitude A(t), which is computed as the
first coefficient of a spatial Fourier expansion of the temperature field. According
to Fig. 1 there is an excellent agreement between the computational results and the
analytical curve.

Due to the Bessel function properties [38], the temperature and heat flux (22) have
an oscillational decay, where the oscillation amplitude is asymptotically proportional
to 1/

√
t . The same asymptotics has been obtained in [20] for one-dimensional har-

monic crystals. In Fig. 1 the envelope proportional to 1/
√
t is shown by the dashed

lines, perfectly bounding both analytical and computational graphs. The existing
theories of heat conduction [24, 25], such as Fourier’s, Maxwell-Cattaneo-Vernotte
(MCV), dual-phase-lag [50], and spacetime-elasticity [21] yield linear differential
equations with constant coefficients, and therefore all of them predict an exponen-
tial decay of the sinusoidal perturbation amplitude. In Table 1 a comparison of the
analytically obtained decay law for A(t)/A0 with the results based on some other
theories is demonstrated, an exponential envelope inherent to the thermalwavemodel
is also shown in Fig. 1. Thus, among the mentioned theories only the current one
gives an analytical solution, which agrees with the MD simulations and asymptotic
estimations of the oscillation decay for harmonic chains [20].
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8 Stepwise Temperature Perturbation

Let us consider nowa stepwise initial temperature distribution,modeling heat transfer
between a hot and a cold body:

x < 0 : T (x) = T2 , x > 0 : T (x) = T1, (23)

where T2 > T1. In this case the integral representations (14), (19) yield for |x | ≤ ct
an exact analytical solution

T (t, x) = T1 + ΔT
π

arccos x
ct ,

q(t, x) = kBcρΔT
π

√
1 − (

x
ct

)2
,

(24)

where ΔT = T2 − T1; for x > ct the original temperature distribution remains and
the heat flux is zero. According to (24) the heat front propagates with the sound speed
c and the heat flux through cross-section x = 0 is constant and equal to 1

π
kBcρΔT . In

contrast, use of Fourier’s law for the same problem gives the heat flux proportional to
t−1/2, which is infinite at t = 0 (an unphysical consequence of Fourier’s law). Thus
the heat flux 1

π
kBcρΔT is provided by the temperature difference that is realized

on the spatial interval x ∈ [−ct, ct] with increasing length of 2ct . Consequently,
the heat flux depends on the temperature difference rather than on the temperature
gradient. This is in qualitative agreement with the known phenomenon of thermal
superconductivity: the heat flux through a one-dimensional harmonic crystal placed
between two thermal reservoirs does not depend on the length of the crystal [6, 18].
The same value 1

π
kBcρΔT was obtained in [51] as a steady-state limit of the heat

flux for large t .
In Fig. 2 the analytical solution (24) is compared with computer simulations for

T2 = 2T1. The above described computation procedure is used. Figure 2 shows the
initial temperature distribution, the analytical solution, and the computation results
obtained at t = t0/8 using 106 and 108 particles (t0 = L/c, where L is the chain
length; only half of the chain is shown in the figure). Convergence to the analytical
solution with the increase of the system size is clearly seen.

Figure 3 shows a part of Fig. 2 corresponding to positive x . For symmetry reasons
this case can be interpreted as a problem of a half-space heating: the initial tempera-
ture for x > 0 is T1 and the boundary condition at x = 0 is T = (T2 + T1)/2 > T1.
The advantage of this formulation is that the constant boundary temperature is main-
tained without any thermostat. This is important since the heat transfer can sub-
stantially depend on the thermostat properties [47, 48]. Solutions of the considered
problem using four different continuum equations are compared in Fig. 3 with the
simulation results. Parameters are chosen in such a way that the total heat quantity
transferred through the cross-section x = 0 (area under each curve) is equal for all
models and the heat front (when it exists) propagates with the sound speed c. Accord-
ing to Fig. 3 the computation results almost coincide with the analytical solution of
Eq. (12) and significantly differ from the solutions based on the other theories of
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Fig. 2 Heat transfer between hot (left) and cold (right) areas of 1D harmonic crystal. The analytical
solution (24) is compared with the computer simulation (MD): 103 chains containing 103 particles
each (cross is an average over 10 particles); 104 chains containing 104 particles (circle is an average
over 100 particles)

Fig. 3 Heat propagation for different 1D models: a Fourier heat equation, b hyperbolic heat equa-
tion, cwave equation, d ballistic heat equation, e computer simulation for 1D harmonic crystal (104

chains containing 104 particles each)

thermal conduction. Indeed, the Fourier heat equation predicts no heat front, the
hyperbolic heat equation gives a stepwise front, while the real heat front is described
by a smooth curve having a vertical tangent at x = ct . Note that the hyperbolic heat
equation behaves as the wave equation at small times and as the Fourier heat equa-
tion at large times [52]. However, according to the analytical solution (24) and the
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presented computer simulations, the heat transfer in a one-dimensional harmonic
crystal is self-similar, i. e. T = T ( x

ct ), so it demonstrates same behavior for any
times.

9 Conclusions and Further Research

An approach for description of the ballistic heat transfer in one-dimensional har-
monic crystals is described. A notion of nonlocal temperature (a generalization of
the kinetic temperature for two separate particles) is used for obtaining a closed
system of equations for the thermal transfer description. For the case of an instanta-
neous heat perturbation this yields to a partial differential equation (12) for the kinetic
temperature, which can be referred to as the ballistic heat equation. The resulting
macroscopic constitutive law (18) (an alternative of Fourier’s law for the considered
system) predicts a finite velocity of the heat front and independence of the heat flux
on the crystal length. The analytical findings are in excellent agreement with the
molecular dynamics simulations and previous analytical estimations.

Further analysis of the ballistic heat equation (12) canbe found in [53].Application
of the presented approach formore complexone-dimensional systems is given in [40],
where a substrate potential is added, and in [35], where an external heat supply and
a viscous environment are considered. Extension of this approach to systems of
higher dimensions is presented in [42] for monoatomic and in [43] for polyatomic
lattices. The presented approach in frames of the general approach for transition
from discrete to continuum thermomechanics is outlined in [54]. The results of the
referred investigations are relevant to aspects of nanotechnology that involve heat
transfer processes in high purity nanostructures [13, 14, 55, 56].
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