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Abstract The advance in nanotechnology has lead to necessity to determine strength
properties of crystal structures. Stability of a structure under finite deformations is
closely connected with its strength. In this work stability of plane triangular (single
atomic layer of FCC and HCP) and FCC lattices under finite strain is investigated.
Analysis and modeling based on discrete atomistic methods is proposed. The medium
is represented by a set of particles which interact by a pair force central potential,
e.g. Lennard-Jones and Morse. Direct tensor calculus is used. Dynamic stability
criterion is established: frequency of elastic waves is required to be real for any
real wave vector. The considered approach allows to describe structural transitions
in solids on the base of stability investigation of pre-strained crystal lattices. The
results of direct MD simulation do not contradict the results of the calculations.

1 Introduction

Recent advance in nanotechnology has lead to the necessity of determining mechan-
ical properties of the minute objects. Due to being small in size such objects are often
without defects, thus their strength, for instance, is close to ideal. According to [1],
ideal strength is the maximum applied stress that an object can endure. Under this
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definition it is assumed that the object remains stable under minor strain or stress
deviations along the loading path. On the other hand, it is crucial to make sure that the
object does not loose stability in terms of arbitrary minor perturbations at each strain
or stress increment. If the object is described within continuum mechanics approach,
analysis of ellipticity of equilibrium equations is to be carried out in order to find first
failure strains [2]. However, continuum analysis is not always valid for nanoscale
objects [3], because at this level influence of internal structure cannot be neglected.
An ideal crystal lattice is one of the simplest models to consider within atomistic
approach. The theory has been developed since works of Born [4], where a criterion
for infinitesimal uniform deformations is established. However, it was shown in [5]
that this criterion does not give adequate results if finite deformation is imposed.
Moreover, further problems appear if the deformation field is inhomogeneous. For
this case in continuum mechanics certain apparatus is developed, e.g. in [6]. As for
atomistic approach, there are at least three ways to find the solution: homogenization
(long-wave approximation etc.) and application of continuum methods, direct inves-
tigation of, e.g. corresponding spring system, and computer simulation. There has
been a number of works, e.g. [7] for FCC (face-centered cubic) lattice under triax-
ial compression, which showed structural transition to BCC (base-centered cubic).
Another series of works [8, 9] is devoted to both 2D (square lattice) and 3D (cubic
lattice) structures, for which macro-(continuum) and microscopic criteria are used
to obtain failure surfaces, both in case of homogeneous and inhomogeneous initial
deformation. Recently, there have appeared independent investigations of graphene
stability [10, 11]; its lattice should be described with more sophisticated interaction
forces.

Tensor Notation

Let us introduce the following notation concerning direct tensor calculus [2] used in
this work. Vectors are denoted by lower-case letters in boldface, e.g. a, tensors are
denoted by upper-case letters in boldface with a digit specifying the rank (if the rank is
not equal to two), e.g.*A, and for scalars italics is used, e.g. A. No special sign denotes
tensor, or dyadic, product, i.e. ab is a dyad, abc is a third-rank tensor etc. For scalar
product symbol - is used, and abc - - - def = (¢ - d) (b - e) (a - f). The notation for the

. . da, day a . .
divergence of vectorais V-a = FRar. + P where V is Del operator. Gradient
X y Z
f vect v . a+,aa+,8a h oa _aax+_8ay+_8az
of vector ais Va = iy — +iy,— +i;,—, where — =i,— +i,— +i;,—,
Tox Yoy Coz ax T ox Y ox “ox

X, y, z are Cartesian coordinates and iy, iy, i; form the corresponding basis of unit
vectors. Transposed gradient of vector a is denoted by aV.

2 Statement of the Problem

In this work mixed approach is proposed, which includes homogenization and is
similar to [10], but regards simpler objects in order to diminish computational diffi-
culty and obtain as much as possible analytically. Firstly, only simple lattices are
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considered not to be distracted by sublattices-induced instabilities. Secondly, as
shown in [12], central pair force interaction is applicable for stability analysis of
close-packed lattices. Following the works mentioned in the previous section, we do
one more simplification, which is consideration of periodic, i.e. infinite, structures,
thus no surface effects will be observed. We use Lennard-Jones and Morse potentials
(1), because they depend only on interatomic distance, they have only 2 and 3 para-
meters respectively and also they provide repulsion upon compression and attraction
upon stretching. For 2D case triangular lattice is regarded, which is an atomic layer
of FCC and HCP (hexagonal close-packed) lattices. For 3D case FCC is considered,
as BCC is non-close-packed, HCP is complex and others are not so widespread as
these three.

= D[ 6], = 0()-2(2)]
(L

Parameters D and 6 are responsible for the potential well depth and width. Near
the equilibrium position if & = 6 Morse potential is equivalent to Lennard-Jones
potential with the same values of the potential well depth and equilibrium distance
a [13]. An important distinction of Morse potential from Lennard-Jones potential
is that during the compression of the material towards » = 0 the interaction force
remains finite, e.g. if & = 6, the repulsion force has the order of 106D/a, which
is preferable for computer simulations under strong compression. In addition, rapid
attenuation of exponents in Morse potential allows us to take into account the smaller
number of coordination spheres.

The procedure of stability criterion derivation and explicit results for 2D case
can be found in [14, 15]. The main idea is as follows. Let us consider a lattice
which is infinite and without defects, not to account for boundary conditions and
inhomogeneities. Using long-wave approximation [4]

~~ 1060, o
axey ~ agep- Vr, (2)

we can write equilibrium equations in Piola form [13]

o 1
i=vP, P=—-——2>3> Falele, 3
poll =V 2VoZk: kay € ek 3)

where u is displacement vector, P is Piola stress tensor, a,? and eg are the reference
bond lengths and directions respectively, F, a; and e are the current forces, the

current bond lengths and directions, pq is density and %is Del operator, both in the

reference configuration, and % r is transposed deformation gradient. Then, let us find
the first variation of (3) which takes the form of the following wave equation (4) for
arbitrary homogeneous deformation field

v=%Q..-VVy, 4)
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where v = du is the first variation of the displacement vector, V is Del operator
in current configuration. *Q is a fourth-rank tensor that depends on the first and
second derivatives of the interaction potential (current forces in bonds F; and bonds’
stiffness Cy) as well as on the geometry of particle surroundings (5)

1
Q= — (Ecp +4B) :
o Vo

1 1 F)
0= 3 3 fiace, B=; T (ck ; —:) eererer.  (5)

Here Vj is the unit cell volume in reference configuration, E is second rank unit
tensor.
The solution of (4) in the wave form is

vV = Voeiw[eik'r, (6)

where k is wave vector and w is frequency. Thus, for any real wave vector frequency
has to be real, i.e. w*> > 0, so that additional minor solution v does not contain expo-
nential growth. This demand leads to positive definiteness of tensor D =*Q - -kk
which looks similar to acoustic tensor that is to be positive definite to provide ellip-

ticity [2], but it is not, because *Q is not in fact equal to 9P/ % r. If they were

o
equal, wave equation (5) would contain V, not V. Hence, instability is associated
with exponential growth of the solution for perturbed state.

3 Triangular Lattice

For biaxial strain along the axes, shown in the bottom of Fig. 1, it is possible to obtain
analytical solution [14, 15] in terms of components of 4Q

011 >0, 021>0, Q012>0, Q12>0, B>—-VAC,
A=01102, C=0120%n, 2B=0110n+ 01202 —4073, (N

where two indices instead of four are used due to the symmetry. All vectors and
tensors introduced in the previous section are two-dimensional. In the Fig.1 the
stability regions of the 2D triangular lattice are plotted gray, &1 and &5 are the linear
parts of the Cauchy-Green deformation tensor, the interaction is described by Morse
potential (1) with 6 = 6.

To check the adequacy of these results for all configurations elastic modulae are
calculated using the formula for Cauchy stress tensor [13]
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1
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where V = \/§a2/2 (1 4+ &1) (1 4+ &) is current volume of the unit cell. It turns
out that the boundaries of stability regions correspond to the loss of positivity of
Young modulae and shear modulae (plural is due to anisotropy). Note that during the
analysis it is crucial to take at least two coordinational spheres into account, despite
the cliche that if you deal with a close-packed lattice only first sphere is sufficient.
As shown in the bottom of the Fig. 1, structural transition from vertical to horizontal
orientation of the lattice is described within stability analysis. Consideration of larger
amount of atoms does not lead to major alterations.

Analysis similar to macroscopic [8] was carried out which showed that real ellip-
ticity condition is necessary but not sufficient (at least less sufficient, than this) for
2D case. Nearly the same results were achieved with Lennard-Jones potential. The
main difference is that this interaction provides stability during compression right
up to deformations arbitrarily close to point £ = g» = —1. This effect contradicts
the results for FCC lattice, achieved in [7].

In addition, an MD (molecular dynamical) simulation is carried out. The sim-
ulation technique is described in [13]. For a series of deformed configurations
we perform the following computational experiment. As the initial condition, we

0.0+

-0.24

T 044
0.6

-0.84

Fig. 1 Top stability regions of the triangular lattice in deformation space €1, €, Morse potential
with & = 6. On the boundaries positivity is lost (7) by: 1 Q11,2 Q2,3 021,4 Q12,5 B+ JVAC,
also 7, 2, 5 by Young modulae, 3, 4 by shear modulae. Bottom transition from vertical to horizontal
orientation of the triangular lattice. Digits denote the coordinate axes. The unit cell is gray, the
reference atom is marked by a circle, the atoms of the first coordination sphere—by circles of a
smaller radius, the atoms of the second coordination sphere—by empty circles
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Fig.2 Unstable configuration
after 10° (left) and 3 x 10°
(right) integration steps. Black
ovals mark “crack” initiation
zones

construct a triangular lattice in the deformed state with periodic boundary condi-
tions, that account for infinite lattice. The interaction is described by means of the
same Morse potential. The initial kinetic energy of the particles does not exceed
0.0002D. The system evolution is described by the solution of the Cauchy problem
for the set of ordinary differential equations

N
mit = D F (g — 1) —— ©)

Iy — Iy,
[y _rnl’

n=1

where N is the number of particles, m is the particle mass, and ry is the radius-vector
of the kth particle. If further we observe oscillations of the kinetic energy around a
certain value not exceeding 0.0002 D, we conclude that this configuration is stable.
If we observe a sudden growth of the kinetic energy, the deformed configuration
is considered unstable. A very good agreement with analytical results is observed.
However, in MD one can only distinguish between 100 % unstable cases and cases,
when instability has not been reached. In addition, the more accurate regions’ bor-
ders are needed, the longer lasts the calculation. Stable regions endured 3 x 10°
integration steps, whereas others—not more than 10° steps, excluding border zones.
MD experiment shows, what exactly happens after stability is lost: either the material
may become liquid, or a crack may appear (see Fig.2).

Similar results were achieved for deformation including shear [15], described by
deformation gradient with the following affine transformation

o 1+e1 tgpa
rv ( 0 14s) (10)

There are only three elements in the tensor (10) in order to exclude solid-body
rotations from consideration.

4 FCC Lattice

In 3D case more or less analytical results can be obtained only for diagonal affine
transformation, whose eigenvectors coincide with axes of cubic symmetry, and are
partially presented in [16]
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. I+e O 0
r v~ 0 1+4+e& O . (11)
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We use Morse potential, because Lennard-Jones allows infinite compression
which contradicts [7]. Three coordinational spheres are considered, because the dis-
tance between the reference atom and the atoms of the third sphere is the same as the
distance between the reference atom and the atoms of the second sphere in triangular
lattice. Positive definiteness of tensor D, i.e. stability, is ensured if

D11 >0, Di1Dy—DipDy >0, detD > 0. (12)

Left parts of (12) are homogeneous functions of wave vector components of degree
two, four and six respectively, and contain only even degrees. Inequalities (12) should
hold for any real wave vector. In this case we cannot fully exclude wave vector com-
ponents from consideration and obtain stability criterion only in terms of components
of 4Q. However, first of all, we have a necessary condition of D1 positive definite-
ness. Moreover, we can write a series of sufficient conditions by extracting quadratic
forms from left parts of inequalities (12). Then, for those cases, when only necessary
condition shows stability, Monte-Carlo method is used.

Proposition 1 Suppose a homogeneous polynomial P(x, y, z) is positive for x > 0,
y > 0, z > 0. Then substitution 7 = 1 — x — y leads to positivity of P(x,y) for
x>0,y>0,x+y<1

This proposition is used to speed up the Monte-Carlo calculations, as inequalities (12)
contain only even degrees of wave vector components. In the Fig. 3 we can observe
a major stable area, which resembles 2D case, and three additional zones, which
make the region non-convex. After calculating coordinational numbers of deformed
lattices that form additional zones, we can conclude that they are compressed BCC
lattices.

Fig. 3 Stability region of FCC lattice in deformation space €1, €2, €3, Morse potential with 0 = 6,
three coordinational spheres. Grey points theoretical result, black points MD result
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Fig. 4 Transitions: a from
FCC (left) to BCC (right),
b from FCC to FCC

Using Bain method [17] we can write an affine transformation from equilibrium
FCC to equilibrium BCC (see Fig.4a)

2 pecc oy = V2 pyec
V3 pree V3 pree

Here we need to take into account so-called “bond compression” which occurs when
more than one coordinational sphere is regarded: equilibrium distance p between
neighboring atoms is smaller than that of the potential.

Due to topological differences between FCC and BCC, two spheres of FCC con-
tain 18 atoms, and two spheres of BCC have only 12. Hence, if initial FCC has
equilibrium with, e.g. two spheres, stress tensor for obtained BCC will be non-zero.
This problem can be solved by cut-off interaction, e.g. [13]

gl =&y = -1 (13)

F(r) =k(r)F(r), (14)
where k(r) is shape function
I, r<b,
22N\
k(r) = 1-— 2—2 s b<r < dcut, (15)
Aeyr — b
0, r > deyr

Here ac,; is the cut-off distance, b is the critical bond length, i.e. F'(b) = 0.

Now, if we plot stress-strain diagram for cut-off smooth potential (14) on the
base of Morse potential, we will see, that equilibrium BCC may be gained from
equilibrium FCC by simple uniaxial compression, e.g. o1 # 0,02 = 03 = 0 (see
Fig.5 for 6 = 4). Due to symmetry there are all in all three equilibrium BCC
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Fig.5 Left uniaxial loading, hatching indicate stability region. Right stability region of FCC lattice
in deformation space €1, €2, €3, smooth cut-off Morse potential with 6 = 4, a.,,; = 10a

lattices. Moreover, equilibrium BCC is unstable if § = 6, and Lennard-Jones does
not describe BCC-zones at all, and these results correspond to [7, 18]. If we make the
potential well wider, BCC will be stable, though more spheres should be accounted
for (see Fig.5). Unfortunately, BCC zones do not separate from FCC, leaving the
possibility of stable FCC-BCC transition. On the other hand, stability region is non-
convex (Fig.5), so “Bain deformation” [17], which is accomplished by strain, not
stress, will provide an unstable zone between FCC and BCC equilibria.

The next step is to include shear into consideration. To get rid of as many solid-
body rotations as possible, the following transformation is used

. l+er tggar 0O
r v~ 0 146 tgen |. (16)
tgpiz 0 1 +e3

Using Bain method [17] again, we can find six FCC lattices of the following origin
(see Fig.4b)

V3 | 2 1 It :i:l
—-1, a= — -1, =+—,

which may look as if we just turned one of the axis of cubic symmetry to [1,1,1] axis.

MD simulation was carried out for triaxial strain and showed again a good agree-
ment except for the “tail” zone (see Fig. 3), which is due to different number of coor-
dinational spheres considered: the more atoms, the longer the “tail”, i.e. maximum
compression for uncut Morse potential varies from 60 % for three coordinational
spheres to 75 %. As stated before, Lennard-Jones potential is not suitable for MD
under high compression, because of infinite forces upon infinite compression.

In addition, analysis for FCC in different axes is performed, so that triangular
lattice plane problem could be accounted for. Again, two major regions in triaxial
strain space are obtained, but their cross-sections differ from 2D results, since in 2D

g1 = &3 = (17)
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Fig. 6 Stability region of 0.2 2D
triangular lattice for 2D (light ® 3D
gray) and 3D (dark gray) 1 ’
wave vector 0.14
]
82 0.0
0.1
024 . ; &

study only 2D wave vectors are considered (see Fig. 6). Thus, we can conclude, that
vast stability region at compression vanishes, if minor perturbations in third direction
occur.

5 Concluding Remarks

In this work stability analysis of infinite triangular and FCC lattices without defects
is carried out. Instability is associated with exponential growth of the solution for
perturbed state. The considered approach allows to describe structural transitions on
the base of stability investigation of pre-strained crystal lattices (see Figs. 1 and 4).
FCC-BCC transition is examined, and several conclusions can be drawn. Due to
topological differences between the lattices smooth cut-off interaction force is to be
used. Lennard-Jones potential does not describe BCC zones, whereas Morse potential
is applicable if the potential well is wide enough, but this demand leads to consider-
ation of additional coordinational spheres. Equilibrium BCC may be obtained from
equilibrium FCC by simple uniaxial compression, though the whole loading path is
stable, as BCC stability zones do not separate from FCC one. On the other hand,
stability region is non-convex (Fig.5), so “Bain deformation” [17], which is accom-
plished by strain will provide an unstable zone between FCC and BCC equilibria.
Furthermore, it is shown that stability region for triangular lattice diminishes, espe-
cially in compression zone, if 3D perturbations are imposed (Fig. 6). MD simulation
is carried out for verification of theoretical results, and they prove to be in good
agreement.
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