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Abstract—The paper proposes a discrete mechanical model of monolayer graphene. A relation between parame-
ters of the model and elastic characteristics of its equivalent continuum is derived by comparing the energy of small
strains on micro- and macroscales. The relation allows one to determine the microscale interaction parameters from
experimental data and, knowing the microscale parameters, to determine the mechanical properties of graphene.
The main aim of the work is to estimate the bending stiffness of a graphene sheet. The proposed discrete model
provides an analytical dependence of the graphene sheet bending stiffness on the microscale interaction parameters.
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1. INTRODUCTION

Recently, much efforts have been toward research
and development of nanoelectromechanical systems, in
particular, for finding methods to create new-generation
of nanoresonators. The available quartz resonators offer
a high frequency and quality factor (up to 400 MHz and
2500, respectively); however, decreasing their thickness
to nanometer sizes impairs their quality due to surface
effects. Moreover, there are difficulties in manufacturing
thin quartz wafers with highly parallel working surfaces
with the result that resonances may occur at harmonics
close to operating frequencies [1]. Therefore, attention
of researchers is toward creating resonators based on
carbon nanostructures, in particular graphene. Graphene
is a graphite monolayer containing a single layer of at-
oms and is the thinnest known material. Since graphene
was pioneered not long ago [2], graphene resonators are
in their infancy [3, 4] and there is much to do with their
design and manufacture.

The mechanical properties of graphene resonators
are defined by the ability of a graphene sheet to resist
both tension and bending. The bending stiffness of gra-
phene (the resistance of an elastic shell to out-of-plane
bending) is its fundamental property. In the works by
Peierls [5] and Landau [6], it is shown that an infinite
prefect 2D crystal loses its stability under the action of

thermal fluctuations. However, the presence of bending
stiffness can provide additional stabilization of gra-
phene, thus precluding its fracture.

In the membrane theory of shells with pure bending,
the bending stiffness D is the proportionality factor be-
tween the bending moment M and curvature of a plate :

M= Dx. (1)
The stiffness D of the plate is expressed in terms of its
Young’s modulus E, Poisson’s ratio v, and thickness 4
[7]:

ERW
b= 12(1-v?) @

However, the thickness of monolayer graphene is impos-
sible to uniquely determine and this does not allow direct
use of formula (2). Let the parameters of graphene be
Eh =340 N/m and v =0.17 that are obtainable from the
experimental data [8]. In the context of the most com-
mon idea [9-14], we also assume that the thickness of
graphene is equal to the spacing between graphene lay-
ers in graphite and is 4 = 0.34 nm. Thus, we obtain D =
3.37 nN - nm. However, this value is an order of magni-
tude higher than the bending stiffness of monolayer gra-
phene (Table 1) estimated by other methods without
using the notion of thickness: ab initio or first-principles
quantum mechanical calculations and calculation with
empirical interaction potentials.
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It is seen from Table 1 that the bending stiffness pre-
dicted for monolayer graphene by the latter two methods
has the same order of magnitude: it varies from 0.13 to
0.26 nN -nm (0.8—1.6 eV). These data are impossible to
experimentally verify in the context of classical conti-
nuum theories. However, these theories are applicable to
multilayer graphene and allow experimental verification
of its bending stiffness. The bending stiffness of two-
layer graphene was determined via electrostatic actua-
tion of a buckled membrane (which lost its stability due
to concentrated force) and was 5.7 nN -nm [18]. The au-
thors of [ 19] determined the bending stiffness of a few-
layer graphene membrane by indentation into a circular
hole; the experimental data fit the curve described by (2).
The dependence of bending stiffness on the number of
layers N for a multilayer membrane was estimated as
D = 9.8N?nN-nm [20]; this value was obtained by es-
timation of “smoothing” of a compliant corrugated sub-
strate on which a graphene membrane was fixed. Thus,
the latter two works experimentally confirm the depen-
dence of bending stiffness on cubed thickness for multi-
layer membranes. However, dependence (2) is inappli-
cable to monolayer membranes.

The bending stiffness of covalent bonds reflects their
orientation. The interaction forces are not central: a
transverse force along with a longitudinal force arises. In
the general case, these interactions can be described tak-
ing into account the contribution of moment interaction,
in addition to force interaction, between pair particles.
The interaction potentials depend on relative positions
and rotations of two interacting particles. This type of
moment models provides agreement with experimental
data, while operating with relatively few but physically
clear parameters. The approach was applied to consider
pure bending of a two-dimensional multilayer nanocrys-
tal with a triangular lattice [21] and this gave formula

D=A4(N-1)N(N+1)+ A4,3N -1). 3)
Here 4, and 4, are constant factors dependent on the
lattice properties. Thus, the bending stiffness of the na-

Table 1. Bending stiffness of monolayer graphene
determined by different methods

Source D,nN -nm Method
[15] 0.24
[12] 0.26 AD initio
[13] 0.23
[14] 0.13 N
[16] 0.13 Empirical

potential

[17] 0.22
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nocrystal is the sum of two terms, of which one vanishes
for a single layer and tends to (2) for a larger number of
layers. The second term is due to allowance for moment
interaction in addition to force interaction. This correc-
tion term, compared to the first term, gets smaller with
increasing the nanocrystal thickness but assumes signifi-
cance for nanocrystals with a small number of layers and
monolayer structures.

The present paper proposes an approach that allows
estimating the bending stiffness of a single graphene
layer. The approach, like the one considered earlier [21],
account for moment interaction in addition to force inter-
action. It is taken that carbon atoms in graphene interact
with each other via forces and moments. Equations de-
scribing these interactions are presented in Sect. 2.1.
A transition from micro- to macrostructure is considered
in Sect. 2.2. The transition makes it possible to relate the
moment and force interaction stiffnesses to the elastic
characteristics of the material. Thus, the bending stif-
fness of a graphene sheet is a function of longitudinal,
transverse, bending, and torsional stiffnesses of carbon
bond. A model of carbon bond—an elastic rod—is de-
scribed in Sect. 2.3. The model allows one to express the
bending and torsional stiffnesses of carbon bond in
terms of longitudinal and transverse stiffnesses and to
relate the latter stiffnesses to experimental data. The de-
sired bending stiffness of graphene is calculated using
the derived formulae in Sect. 2.4. Discussion of the re-
sults and concluding remarks are presented in Sect. 3.

2. BENDING STIFFNESS OF A GRAPHENE
SHEET

2.1. Microscale Interaction

The interactions in the graphene lattice are described
using the approach proposed elsewhere [21, 22]. A car-
bon atom in graphene is modeled by a body-point, i.e., by
amaterial object which occupies a zero volume in space
and the position of which is considered definite if its po-
sition vector and rotation tensor are given. The interac-
tion between body-points is characterized by force and
moment vectors.

Let us use a system of two body-points to model lat-
tice atoms. In the actual configuration, their position is
specified by radius vectors r;,r,, and orientation by
rotation vectors @, ¢,. In the equilibrium position,
r,—r =r), ¢; =0, ¢, =0. Let f;, m; be the force and
moment acting on body-point 1 from the side of body-
point 2 and f,, m, be the force and moment acting on
body-point 2 from the side of body-point 1. For these pa-
rameters, we have
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f=f=-f,, 4
m=m, +1/2(r; -1, )xf; =—m, —1/2(r, -1, )xf,. (5)
For linear elastic deformation, the internal energy can
be given in the following approximation:
U=f,-e+m,-k+1/2¢-A-e+&-B-k+1/2k-C-k.(6)
The coefficients A, B, and C are the stiffness tensors of
bonds and the vectors f, and m, are the initial forces. In
the linear theory, the stiffness tensors are constants, with
the tensors A and C being symmetric and B being arbi-
trary. The vectors € and K, which are the strain vectors,
are assigned the work of force and moment vectors:
f=f,+A-e+B-x, m=m,+&-B+C-k. @)
The above relations were derived using the interaction
moment m calculated with respect to the midpoint of the
segment connecting the body-points. The stiffness ten-
sors B and C were also calculated with respect to this
point. The strain vectors, in this case, have the form:

e=r—ry+1/2ryx(@,+,), g
K=0; =@, r=r, —I. ®

Equations (7), (8) are convenient for determination of
the stiffness tensors. The interaction characteristics of
the examined two-particle system were calculated with
respect to the centre of the system; therefore, the system
has two orthogonal symmetry planes. It can be demon-
strated that the stiffness tensors, in the case, have the
form:

A =C i+ Cpjj, B=0, C=Crii+ Cy(jj+kk), (9)
where i, j, and k are the orthonormal basis vectors such
that the particles lie in the plane formed by the vectors i
and j, k is orthogonal to this plane.

However, in solving specific problems, it is often
convenient to use interaction moments calculated with
respect to body-points. The strain vectors thus take the
form

g =TI =TIy +IXQPy, K| =@, @), r=r,-1. (10)
The force and moment vectors, in this case, can be ex-
pressed as

f, =f0 +T, ¢ +Tg ¥,
m; =m; +¢, Ty +T¢ k. an
The initial forces f, and i, differ from the initial
forces f, and m ), and the stiffness tensors T,, Ty, and
T, differ from the tensors A, B, and C. In what follows,
we consider unstressed systems, i.e., the initial forces are
taken equal to zero. It is easy to check that the following
relations hold true:
T, =A, T; =B-1/2Axr,,

12
Te = C+1/2(r,x B—- B" x1,) —1/4 1, x AT, (12)
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Let us consider a more general case of particle interac-
tion. Let the discrete structure of material represent a set
of body-points which have three rotational degrees of
freedom and three translational degrees of freedom; we
consider the interaction of the nearest neighbors only.
For simplicity, the bonds between the particles are as-
sumed transversely isotropic. The bond strain is de-
scribed by four force constants: C, for tension, C;, for
shear, C, for torsion, and C, for bending. The elastic
strain energy of the lattice per unit lattice cell can be rep-
resented as the sum of strain energies for the bond be-
tween a certain reference particle and its nearest neigh-
bors:
W-—>3n, (13)
2V, o

where I, is the potential interaction energy for the par-
ticle and its neighbor with an index o, ¥}, is the unit cell
volume. In the unit lattice cell, there can be more than
one particle. For example, the graphene lattice contains
two particles in its unit cell.

The potential energy I1, can be represented as the
quadratic form of strain vectors and bond stiffness ten-
sors:

I1

o

1
=E£(X'A(x'£(x+£(x~B(X~K(x+1/2K(X~C(X~K(X,(14)

where A, B, C, are the stiffness tensors of the bond
oo which contain information on the bond strain in differ-
ent directions:

A, =Cnn,+CH(E-nn,), (15)

C,=Cmn, +Cz(E-n,n,), an,=a,.

Here E is the unit tensor, the vector n, =a, /a, where a
is the bond length, a, connects two neighbor particles.
The tensor B is equal to zero if the lattice has two mutu-
ally perpendicular symmetry planes [16], which holds
true for the graphene lattice.

The strain vectors can be represented in the form
[16]:

8()(.:ll()(._ll-|-1/2a()(.><(q)0(.-|-(P)’ KOL:(POL_(P (16)
Here u,,, u are the displacements of the particle with an
index o and reference particle, respectively; ¢, @ are
their rotations.

Equations (14), (15) can be substituted in (13) to de-
termine the potential energy of the particle system de-
pending on the particle position u,,u, orientation
¢, 9, initial configuration geometry a,, and force in-
teraction constants C,, Cy, Cp, Cp,.

2.2. Micro-to-MacroscaleTtransition

Let us correlate the displacements and rotations of a
particle with those of a continuum element: u=u (r), @ =

PHYSICAL MESOMECHANICS Vol.17 No.4 2014
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@ (r), where r is the radius vector in the initial configura-
tion. Then, the displacements and rotations of neighbor
particles can be expressed as u, =u(r—ag), ¢, =@x
(r—ay). Letus use the long-wave approximation [23]
assuming that the wavelengths are much larger than the
initial interatomic distance between the nearest neigh-
bors a,, which is taken to be a small parameter. Then,
the displacements and rotations can be represented in the
form of expansions:

u,=u+a, -vu+tng ¢,=0+a,-Vo+ny. (17)
Here V is the nabla operator. The parameter 1) is equal to
unity if the unit cell contains two particles and to zero if
it contains one particle. The vectors ¢, ¥ denote the rela-
tive displacements and rotations of particles from differ-
ent sublattices of the complete lattice. Expressions (17)
can be substituted in the expression for energy W (13).
Then, we are to find the vectors g, Wy from the condition
that they provide displacement of one sublattice relative
to the other to fit the minimum strain energy:

a—W =0, a—W =0. (18)
dg oy
Once the vectors ¢, y are determined from condition
(18), the energy density of the equivalent continuum
takes the form
W=w uVe,e,C,,C,,Cp,Cp). (19)
The energy density can also be represented in the quad-
ratic form of fourth rank stiffness tensors and strain ten-
SOrS:

W=1/22£~~4A..2£+23..4B..2K

+1/2%k-4C- k. (20)
The strain tensors have the form:
2e=Vu+Exg, ’k=Ve. 1)

To obtain relations between the microscale force interac-
tion constants and stiffness tensor components, we are to
compare the expressions for energies (19) and (20).

Now let us apply the above method to the 2D hexago-
nal graphene lattice. Let us introduce an orthonormal ba-
sis {e, e,, e;}, where the vectors e, and e, lie in the
lattice plane and the vector e, is perpendicular to the lat-
tice plane. Let the axes x, y, and z be codirectional with
the vectors e,, e,, e;, respectively. Then, the bond direc-
tion vectors can be expressed as

n =e, n,=—1/2¢ +3/2e,,
n; =-1/2¢, —\/5/2e2.

The displacements and rotations can also be expanded in
terms of the basis:

u=u"(x, y)e, +u’(x, y)e, +u (x, ye,,
O=0"(x, y)e; + 07 (x, y)e, + 0™ (x, ye;.

(22)

(23)
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So, it is easy to compare energies (19) and (20); energy
(19) was obtained for the graphene lattice with regard to
(22). For this purpose, we equate the factors preceding
the derivatives of the displacement and rotation vector
components and also those preceding the rotation vector
components in expressions (19) and (20) after their pre-
liminary componentwise representation. Eventually, we
obtain the relations between the stiffness tensor coeffi-
cients and interaction parameters on the microscale:

3 C(C,+3C))
A1111=A2222=_—A 4 =

b

6 C,+C),
Co e B GG +3Cy)
1111 = ~2222 — 6 C.+C ’
T B
A =4 ZECA(CA_CD)
1122 2211 6 C.+C >
A D
C =C :£CT(CT_CB)
1122 2211 6 CT+CB ’
a3 Cp(Cp+3Cy 24
1212 2121 >
6 Cc,+Cp
Co e 3 Cp(Cy+3Cy)
1212 = 2121 — 6 C.+C ’
T B
A =4 :£CD(CA_CD)
1221 2112 6 C.+C >
A D
Co =C _ V3 Cy(C=Cp)
1221 2112 >
6 Cr+Cy

B B

3131 = 33 =TCD, G131 = G :TCB‘

Equation (24) contains nonzero components of the
tensor * A and tensor *C. The continuum equivalent to
the graphene lattice is invariant with respect to rotations
about the normal e; and to reflections from the basal
planes. According to the Curie principle [18], the stiff-
ness tensors are bound to have the same symmetry, as
reflected in (24): only this set of nonzero components
and equality of the tensor *B to zero provides the speci-
fied symmetry. The components in (24) are not indepen-
dent and some of them can be expressed in terms of the
others:

A1y + A1 = Ay~ A

Cioin + G =Gy =G

The system of equations (24) can give one more rela-
tion:

(25)

2 2
Allll_A1122

Ayp5 = >
34110 + A1y, (26)
Coo = C1122(C1111_C1122)_
2 3C 1 +Chy
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The tensor * A relates the force stress tensor T and the
strain tensor €, and the tensor *C relates the couple
stress tensor M and the strain tensor K:

Iy = A€ + Ao

Ty = A€y + Apon€ons

Ty = Ay €1p + 4128215

Tiy = A1y + A28 01
Ti3 = 431318135 To3 = A332€035 (27)

My =Gy + CrippKos
My = CrpyiKyy + CoppyKy
My = Cipg Ky + Crapp ¥y
My = Cia1Kyp + Gy 10Ky
M3 =Cy131K13, M3 = Cip3pKos-
The strain tensors €, K have the following components:
€=Uy, Ep =UN =@, E3=U, +Q", €y zu,xy +¢°,

€ =iy, By =UL, =@, Ky =@ Ky =0, (28)

Ky =@ Ky = (P,yya Ki3 =@, Kp3 = (P,Zy-
Reasoning from these relations, one can define the phy-
sical meaning of different stiffness tensor components.
The coefficient A4,,,, is responsible for tensile proper-
ties, 4,15, for Poisson’s effect, 4,,;, and 4,,,, for shear
strain and stress in the vector plane e,, e,, coefficient
Ay,5, for those in the orthogonal plane, C;;,; for torsio-
nal properties, and C;,,, for analogue of the Poisson’s
effect in torsion.

Let us define the bending stiffness D as a coefficient
between the couple stress in a section orthogonal to e,
and the strain K, (or e, and K,,). Then, this coefficient
isequalto Cj55 (Cypp)):

V3 Cp(Cp+3Cr)

6 Cz+Cp
Unfortunately, there is a lack of experimental data to de-
termine all elastic moduli. For this reason, let us consider
a simplified theory to operate with a smaller number of
independent parameters. Assume that no in-plane couple
stresses are present. The stiffness tensor *A is thus
bound to be invariant with respect to transposition of a
pair of indices 12 and 21. So, we can introduce a new
component Ay, = (A, + A4j5y,)/2 to fit the simplified
theory as:

D= (29)

- B G,

3 C,+Cp
The results for the coefficients 4,,,; and 4,,,, descrip-
tive of in-plane strains coincide with those obtained

earlier [22] using experimental data for graphite to cal-

B #

Ay = Ao = Ao = Ay = - (30)
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culate the force constants C, and Cj,. Itis found that
Cp/C,=0.55 suggesting that the transverse stiffness is
comparable to the longitudinal stiffness and is to be ta-
ken into account.

As can be seen from expressions (24), Poisson’s ef-
fect disappears if C, =Cj. The same is true at C;, =
Cj: there is no torsion orthogonal to the direction of ap-
plied torque.

2.3. Rod Model of Carbon Bond in Graphene

By now, many efficient approaches have been pro-
posed for microscale dynamic simulation of graphene.
Among them are ab initio and molecular dynamics me-
thods [10—17, 24] and molecular mechanics methods
[25, 26]. A distinguishing feature of our approach is that
we propose a quite definite mechanical model of carbon
bond—an elastic rod that operates under tension-com-
pression and bending-torsion. The rod models the inter-
action of electron clouds responsible for directional co-
valent chemical bonds. Clearly, the elastic characteris-
tics of the rod should be chosen so that the resulting mo-
del fits experimental values of the elastic characteristics
of'an examined crystal. At the same time, the studies [22,
27] show that this bond can be described using the mo-
ment approach such that the characteristics of moment
interaction can be determined for graphene and dia-
mond.

For better understanding, let us dwell on the basic
equations of the linear theory of rods [26] and on some
problems the solution of which are required in our fur-
ther consideration. Let the displacements of rod points
be described by the equations:

u=uttw, t-w=0,y=yt+tx0,0-t=0. (31)
Here u is the longitudinal displacement of rod points, w
is the transverse displacement vector, \/ is torsion, tis the
unit tangent vector. The strain vectors are given by the
relations

e=ctty,e=u,y=w-0,0=y't+tx0. (32)
Here ¢ is the elongation of the rod, ¥ is the transverse
shear strain vector, \’ is the torsion of the rod, 0 is the
bending strain vector.

In the linear theory of rods without natural torsion,
the relations for forces and moments acting in the rod
take the form:

n=A-e, m=é~(p, n=Tt+q,
t-q=0, m=Ht+txl, t-1=0.
Here T is the longitudinal force in the rod, H is the

torque, q is the transverse force vector, l is the bending
moment vector.

(33)

PHYSICAL MESOMECHANICS Vol.17 No.4 2014
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The stress tensors A and C are expressed as fol-
lows:

A = EFtt+kGF(E—tt), C=GJ tt+E “c,
2c=Jdd, +J,d,d,, k=12/12.

In the above formulae, £'is Young’s modulus, F'is the
cross-sectional area of the rod, G is the shear modulus, &
is the transverse shear coefficient, d;, and d, are the
normal and binormal vectors, J; and J, are the respec-
tive inertia moments for the rod cross-section. The quan-
tity J, stands for the geometric torsional stiffness such
that J_ for an elliptical rod is equal to the polar moment
of inertia J,.

Using the above notation with neglecting distributed
external forces and moments, the equilibrium equations
for the rod can be represented as:

n'(s)=0, m’(s)+txn(s)=0,
where s is the natural coordinate of the rod.

Let us consider a system of two particles, of which
one is rigidly fixed and the other is displaced relative to
it by a translation vector u” and rotation vector @". So
the particles, according to the moment approach, start
experience force and moment interactions (7) cha-
racterized by the components C,, Cy, C;, and Cp. On
the other hand, it can be assumed that the particles are
connected via an elastic rod whose left end is fixed and
right end is shifted from the equilibrium position by a
vector u” and rotated through an angle @". Asaresult,
forces dependent on u” and @" arise in the rod. Static
equations (35) for them give

n=n, =const, m=m;—txns.

(34)

(35)

(36)
Let us introduce, in view of (36), the following notation
for the force and moment at the rod end:

n"=n,=const, m" =m,—txny/. 37)
On the other hand, according to (33), we have
n=A-(u'+txg), m=C-¢’. (38)

Simultaneous solution of (36) and (38) gives us the ex-
pression for displacement and rotation vectors:

u=A" n,s—t
x(C™'(1/2mys? =1/ 6txnys® )+ @,s)+uy, (39)
0=C"-(mys—1/2txnys?)+@,.
In view of the boundary conditions
“|s:o =0, | _, =0, “|s=1 =u’, (P|s=1 =¢", (40)
we find that
u, =0, ¢ =0,
0" =C'-(myl-1/2txnyl?), (41)
u' =A"ny/—tx(C-(1/2m 2 =1/ 6txn ).
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Let us solve (37) and (41) for u* and @". So, the
force acting at the rod end can be reduced to the form:
n"=A-¢, ¢ =u"+1/2tx¢",
A=A -1/12(txC ! xt)P) .
Comparison of the latter relations with (7)—(10) shows
that we have managed to derive the same form of in-
teraction force as that obtained in the discrete approach.
The tensor components A can be found by expressing the
second rank tensor as
A=Mtt+A,dd, +2,d,d,. (43)
It is easy to check that the inverse tensor, in this case, has
the form:
AT =10+, dd, + A dod,. (44)
By using this and by substituting expressions (34),
we can find the components of interest:
C,=t-A-t=EF/I,
B 12kEJ F
KFI +24J,(1+v)
The equations of the theory of rods used by us to derive
(45) take into account transverse shear strains and corre-
spond to the Timoshenko beam model. This model al-
lows the use of Poisson’s ratio v as an independent pa-
rameter in the expression for C,. However, if there is no
need to account for transverse shear, one can use a sim-
pler model, e.g., the Bernoulli-Euler model. To switch to
the latter model, we can put k£ — o in (45). Then, we ob-
tain

(42)

(45)
Cp=d,-A-d,

EF

12
CA:T’ CD: EJZ

13
The moment at the rod end can be expressed in a form si-
milar to (11):

. (46)

m*=¢-B+C-x, (47)

where
B=1/2txA, C=1/1€-1/4txAxtl?,
g =u+(txe)l, k| =¢" (48)
Using (11), it is easy to verify that the bending stiffness
Cj can be found by the formula:

Cy=1/1d,-C-d, =(EJ,)/I. (49)
Noteworthy is that expressions (48) can easily give the
torsional stiffness of an elastic rod about its axis, which
is not considered in our moment approach:

Cy=11t-C-t=(GJ,)/I. (50)

2.4. Bending Stiffness of a Graphene Sheet

Let us model the bond between two lattice atoms by
linear elastic rods. For definiteness we assume that the
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rods are round, their diameter is constant, and their
length is equal to the interatomic bond length. Then, the
area, the moment of inertia of the rod section, and the po-
lar moment of inertia take the respective forms:
nd* nd* nd*
F—T, J2—6—4, JP_H' S

Here d is the rod diameter. Let us determine the elastic
characteristics of the rods using the Euler model. From
(46), in view of (51), we can obtain the expressions for
Young’s modulus and diameter in terms of longitudinal
and transverse bond stiffnesses:
3¢, 23 [Cp,
nlC,’ 3 NG,
which completely determine the elastic properties of the
rods in the model.

Substitution of (51), (52) in (49) and (50) can give us
the expression for the bending and torsional stiffnesses
of the rods:

c, Cd® _Cpl?

(52)

2 2
LGy = Cd” __Cpl . (53)
16 12 16(1+v) 12(1+v)
Substitution of (53) in (29) gives the expression for the
bending stiffness of a graphene sheet:

5 NE

3 2 2
D=—x(WVv)C,d"=—x(v)Cpa", 54
28 (V)Cy 36 (vV)Cpa (54)
4+v
K(v)=
V) 442v

The bending stiffness contains an independent para-
meter—Poisson’s ratio—which, generally speaking, re-
mains undetermined. For this parameter, there is a limi-
tation—1.0<v <0.5 which gives

9/10 <x(v)< 3/2. (55)

The parameters C, and Cj, can be uniquely deter-
mined from the elastic characteristics of a material. In
particular for graphene, according to [22], these charac-
teristics can be found using the experimental data of [3]:

C,=730.2N/m, Cp, =401.6 N/m, /=0.142 nm. (56)
Then, substitution of (55), (56) in (54) gives
0.35<D<0.58nN - nm. 57
3. DISCUSSION OF THE RESULTS AND
CONCLUDING REMARKS

Thus, our calculations allow one to determine the
bending stiffness of a graphene sheet through modeling
the carbon bond by rods bent according to the Bernoulli—
Euler model. However, this approach has a significant
drawback.

Substitution of (56) in (52) gives £=8.928 TPa, d =
0.122 nm; that is the rod diameter compares with the rod
length and a significant error may arise in estimating the

bending by the Bernoulli—Euler model. It would be more
appropriate to use the Timoshenko model; however, in
this case, there appears one more undetermined parame-
ter—the transverse shear coefficient k. Generally speak-
ing, this coefficient depends on the cross-section shape.
Forrods and shells, the passage from theories that account
for shear to classical theories is through the limit £ — oo.
In the theory of shells with regard to shear, one can show
that the parameter £ lies in the range n / 12<k <1 [28].
However, in the theory of rods this fact is unproven [29],
and therefore, due to specificity of the model material,
we leave this parameter without its upper bound.
From (46) it follows that
C, 4r L 20+)
C, 3d° k
Because the rod diameter and length are positive, we can
relate Poisson’ ratio and transverse shear coefficient as

kCa_ (59)

. (58)

-l<v<—*-1.
Cp

From this it follows that £ >2C,/C, atv =0, and
the & dependence of d is thus a rapidly decreasing mono-
tonic function.

At k=2C,/C,, the rod diameter tends to infinity,
and its minimum value is reached at £ — oo and is equal
to d=0.122 nm given by classical theories. Atk=4.12,
the rod length becomes comparable to the rod diameter,
and the bending stiffness is 0.53 nN-nm. At k=10, the
rod diameter differs by less than 5% from that given by
the classical theory.

If we use the classical value of the transverse shear
coefficient and put k = n* / 12, condition (59) that pro-
vides positive diameters of the rod material simulative of
the carbon bond gives the following interval of possible
values of Poison’s ratio:

—1<v<-0.252. (60)

Note that at v — —0.252, the rod diameter increases
without limit, and at v — —1, the bending stiffness be-
comes equal to that obtained earlier using the Bernoulli—
Euler model (0.122 nm).

Thus, the approach proposed in the paper makes it
possible to determine the elastic characteristics of gra-
phene. The graphene lattice is modeled by a set of body-
points interacting with each other via forces and mo-
ments. These interactions are characterized by micro-
scale force constants. The energy approach used to iden-
tify the elastic strain energy of a unit lattice cell with the
elastic strain energy of its equivalent continuum allows
deriving the relation between the force constants (micro-
scale parameters) and the elastic moduli of the conti-
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nuum (macroscale parameters). One of the macroscale
characteristics of particular interest is bending stiffness.
In the paper, this parameter is defined as the proportiona-
lity factor between the components of the couple stress
tensor and torsional strains corresponding to bending
strains. The analytical dependences obtained for the
microscale interaction parameters and macroscale para-
meters of the material allow one to obtain expressions
for the bending stiffness and for other elastic characteris-
tics. However, to do this requires estimation of the mic-
roscale parameters (torsional and bending stiffnesses of
the bond), for example, from experimental data or from
data used to determine the parameters of distributed
force fields for graphite structures. At present, there are
difficulties in experimental determination of the torsio-
nal and bending stiffnesses of covalent bonds in gra-
phene. Therefore, it is proposed to use some additional
assumptions on the bond between atoms by applying the
rod model. The model allows expressing the bending
stiffness of graphene in terms of transverse and longitu-
dinal stiffnesses responsible for in-plane strains of a gra-
phene sheet. These stiffnesses can be determined from
the available experimental data for graphite. As aresult,
we obtain the bending stiffness of a graphene sheet. The
obtained analytical values of the bending stiffness have
the same order of magnitude as those given by computer
simulation based on empirical potentials and ab initio
calculations.
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